ftp_tt_a; ftp_tt
 Design A Chemistry/Physics
 The Molecular Nature of Matter and Change Itp_st

(In) Brian Laird
ftipat University of Kansas
tip_Lx With significant contributions by
(ne...) Raymond Chang
thpat_-a Williams College

COLOR PALETTE FOR CHEMISTRY/PHYSICS TEMPLATE A

$$
\begin{aligned}
& \text { C-65 } \\
& \text { M-0 } \\
& \text { Y-30 } \\
& \text { K-40 }
\end{aligned}
$$

C-17
M-0
Y-8
K-8

C-6
 M-0
 Y-4
 K-4

C-4
M-0
Y-0
K-6
$\mathrm{C}-80$
M-0
$\mathrm{Y}-0$
$\mathrm{~K}-40$

C-0
M-0
Y-35
K-15

About the Cover This is filler copy for placement only that will describe the cover image and it's significance to chemistry.
This is filler copy for placement only that will describe the cover image and it's significance to chemistry. This is filler copy for placement only that will describe the cover image and it's significance to chemistry. This is filler copy for placement only that will describe the cover image and it's significance to chemistry.
\qquad UNIVERSITY CHEMISTRY

To Deb, Morgan,
Ava, and Brynna with all my love

- David -

About the Author

Brian Laird was born in Hong Kong and grew up in Shanghai and Hong Kong, China. He received his B.Sc. degree in chemistry from London University, sity. After doing post doctoral research at Washington University and teaching for a year at Hunter College of the City University of New York, he joined the chemistry department at Williams College, where he has taught since 1968. Professor Laird has written books on physical chemistry, industrial chemistry, and physical science. He has also coauthored books on the Chinese Language, children's picture books, and a novel for juvenile readers. He received his B.Sc. degree in chemistry from London University, England, and his Ph.D. in chemistry from Yale University. After doing post doctoral research at Washington University and teaching for a year at Hunter College of the City University of New York, he joined the chemistry department at Williams College, where he has taught since 1968. Professor Laird has written books on physical chemistry, industrial chemistry, and physical science. He has also coauthored books on the Chinese Language, children's picture books, and a novel for juvenile readers.

Brief Contents

fbt_tx0 The Basic Language of Chemistry0
1 Quantum Theory and the Electronic Structure of Atoms 00
2 Many-electron Atoms and the Periodic Table 00
3 The Chemical Bond 000
4 Chemical Bonding in Polyatomic Molecules: Molecular Geometry and Interaction 000
5 States of Matter: Gases, Liquids, and Solids 000
6 Thermochemistry: Energy in Chemical Reactions 000
7 Entropy, Free Energy and the Second Law of Thermodynamics 000
8 Physical Equilibrium 000
9 Chemical Equilibrium 000
10 Acids and Bases 000
11 Solution Equilibria 000
12 Electrochemistry 000
13 Chemical Reaction Kinetics 000
14 Atmospheric Chemistry 000
15 Chemistry of Metals 000
16 Organic Chemistry 000
17 Synthetic and Natural Organic Polymers 000
18 Nuclear Chemistry 000
Appendix 1 Mathematical Background A-00
Appendix 1 Thermodynamic Data at 1 bar and $25^{\circ} \mathrm{C}$ A-00
Appendix 1 Thermodynamic Data at 1 atm and $25^{\circ} \mathrm{C}$ A-00
Appendix 1 Title for Appendix Here A-00

1 Quantum Theory and the Electronic Structure
of Atoms 00
Box: Major Experimental Technique: Mass Spectometry 00
Chapter Summary
Key Words Questions and Problems Special Problems
1.1 Classical Physics Does Not Adequately Describe the Interaction of Light with Matter 00
Summary of Rules for Writing Constant Expressions 00
Summary of Rules for Writing Constant Expressions 00
1.2 The Bohr Model Was an Early Attempt at a Quantum Theory of Atoms 00
1.3 Matter has Wavelike Properties Described by the Schrodinger Equation 00
1.4 The Hydrogen Atom is an Exactly Solvable Quantum- Mechanical System 00
Box: Major Experimental Technique: Electron Microscopy 0 00
2 Many-Electron Atoms and the Periodic Table 00
2.1 The Wavefunctions of Many-Electron Atoms can be Described to a Good Approximation Using Atomic Orbitals 00Summary of Rules for Writing Constant Expressions 00
2.2 Electron Configurations of Many-Electron Atoms are Constructed using the Aufbau (or "Building Up") Principle 00
2.3 The Periodic Table Has a History that Predates Quantum Mechanics 00
0 The Basic Language of Chemistry 0
0.1 Chemistry is the Study of Matter and Change 00Summary of Rules for Writing Constant Expressions 00
0.2 Matter is Made of Atoms and Molecules 00
Summary of Rules for Writing Constant Expressions 00
0.3 Compounds are Represented by Chemical Formulas 00
0.4 Reactions are Described as Balanced Chemical Equations 000.5 Quantities of Atoms and Molecules can be Described by Massor Number 00
0.6 Stoichiometry is the Quantitative Study of Mass and Mole Relationships in Chemical Reactions 00

16.3 The structure and Properties of Organic Compounds are Greatly Influenced by the Presence of Functional Groups 00
16.4 The Petroleum Industry is a Major Source of Organic Compounds 00
16.5 Nuclear Magnetic Resonance (NMR) Spectroscopy can be Used to Identify and Characterize Organic Compounds 00
16.6 Stoichiometry is the Quantitative Study of Mass and Mole Relationships in Chemical Reactions 00
17 Synthetic and Natural Organic Polymers 00
17.1 Properties of Polymers 00
17.2 Synthetic Organic Polymers 00
17.3 Proteins 00
17.4 Nucleic Acids 00
Box: The Discovery of the Double Helix 00
Box: The Human Genome 00
18 Nuclear Chemistry 00
18.1 Nuclear Chemistry is the Study of Changes Involving Atomic Nuclei 00
18.2 The Stability of a Nucleus is Determined Primarily by its Neutron to Proton Ratio 00
18.3 Radioactive Decay is a First-Order Kinetic Process 00
18.4 New Isotopes can be Produced Through the Process of Nuclear Transmutation 00
18.5 The splitting of a Large Nucleus into Smaller Nuclei is Called Nuclear Fission 00
18.6 In Nuclear Fusion Small Nuclei Merge Through Collision to Form Larger Nuclei 00
18.7 Radiactive and Stable Isotopes Alike Have Many Applications in Science and Medicine 00
18.8 Radiation can Have Profound Effects on Biological Systems 00
Appendix 1 Mathematical Background 00
A1.1 Differential and Integral Calculus 00 00
A1.2 Simple Differential Equations 00
A1.3 Finding Roots of Polynomials 00 00
A1.4 Matrix Manipulations 00 0
Appendix 2 Thermodynamic Data at 1 bar and 25° 00
Glossary G-1
Credits C-1
Index I-I

This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section.

This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section.

New and Improved Changes

We define the main goal of this edition is to further improve areas that will facilitate the instructor and aid students in important areas such as organization, art program, readability, and media.
» The chapter on coordination chemistry has been moved to near the end of the book.
» The main goal of this edition is to further improve areas that will faciliate the student to learn better.
» The chapter on coordination chemistry.
The main goal of this edition is to further improve areas that will facilitate the instructor and aid students in important areas such as organization, art program, readability, and media.

Readability

1. New title reflecting the content of this text is for a one-year introductory chemistry course.
2. The chapter on coordination chemistry has been moved to near the end of the book.
3. The chapter on coordination chemistry has been moved to near the end of the book.

The main goal of this edition is to further improve areas that will facilitate the instructor and aid students in important areas such as organization, art program, readability, and media. The main goal of this edition is to further improve areas that will facilitate the instructor and aid students in important areas such as organization, art program, readability, and media.

Animations

fpr_hc
The main goal of this edition is to further improve areas that will facilitate the instructor.

1. New title reflecting the content of this text.
2. The chapter on coordination chemistry.

The main goal of this edition is to further improve areas that will facilitate the instructor.

Acknowledgments

The main goal of this edition is to further improve areas that will facilitate the instructor and aid students in important areas such as organization, art program, readability, and media.

William E. Acree University of North Texas
June Bronfenbrenner Anne Arundel Community College-Arnold

Adedoyin Adeyiga Bennett College
fprak_lu
June Bronfenbrenner Anne Arundel Community
College-Arnold
Adedoyin Adeyiga Bennett College
Gul Afshan Milwaukee School of Engineering
Adedoyin Adeyiga Bennett College
Gul Afshan Milwaukee School of Engineering
Adedoyin Adeyiga Bennett College
June Bronfenbrenner Anne Arundel Community
College-Arnold
Adedoyin Adeyiga Bennett College
Gul Afshan Milwaukee School of Engineering
Adedoyin Adeyiga Bennett College
Gul Afshan Milwaukee School of Engineering
Adedoyin Adeyiga Bennett College
June Bronfenbrenner Anne Arundel Community
r_au
College-Arnold

FPO

Adedoyin Adeyiga Bennett College

Gul Afshan Milwaukee School of Engineering
Gul Afshan Milwaukee School of Engineering
The main goal of this edition is to further improve areas that will facilitate the instructor.
-Brian Laird

Features

Each chapter opening section contains a vibrant photograph to introduce the chapter as well as a clear, concise chapter outline. Then, to spark the student's interest, the chapter text begins on the actual opening page.

The main goal of this edition is to further improve areas that will facilitate the instructor and aid students in important areas such as organiza-
tion, art program, readability, and media. The main goal of this edition is to further improve areas that will facilitate.

1. New title reflecting the content of this text is for a one-year introductory chemistry course.
2. The chapter on coordination chemistry has been moved to near the end of the book.
3. The chapter on coordination chemistry has been moved to near the end of the book.

FPO

This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section.

This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section.

This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section.

How to Succeed in Chemistry Class

We define the main goal of this edition is to further improve areas that will facilitate the instructor and aid students in important areas such as organization, art program, readability, and media.
» The chapter on coordination chemistry has been moved to near the end of the book.
» The main goal of this edition is to further improve areas that will faciliate the student to learn better.
» The chapter on coordination chemistry.
The main goal of this edition is to further improve areas that will facilitate the instructor and aid students in important areas such as organization, art program, readability, and media.

Commitment of Time and Perseverance

1. New title reflecting the content of this text is for a one-year introductory chemistry course.
2. The chapter on coordination chemistry has been moved to near the end of the book.
3. The chapter on coordination chemistry has been moved to near the end of the book.

The main goal of this edition is to further improve areas that will facilitate the instructor and aid students in important areas such as organization, art program, readability, and media.

Animations

The main goal of this edition is to further improve areas that will facilitate the instructor.

1. New title reflecting the content of this text.
2. The chapter on coordination chemistry.

The main goal of this edition is to further improve areas that will facilitate the instructor.

Getting Organized

The main goal of this edition is to further improve areas that will facilitate the instructor and aid students in important areas such as organization, art program, readability, and media.

This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section.

This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section.

This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section.

This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section.

List of Selected Applications

Biology/Life $\begin{gathered}\text { tft_ha } \\ \text { Science }\end{gathered}$

Energy transformation in a jumping flea, Section 6.7, p. 205
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting,
Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333
Energy transformation in a jumping flea, Section 6.7, p. 205
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting,
Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting,
Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting,
Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333

Chemistry

Energy transformation in a jumping flea, Section 6.7, p. 205
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting,
Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333
Energy transformation in a jumping flea, Section 6.7, p. 205
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting,
Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting,
Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333

Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting,
Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333

Geology/Earth Science

Energy transformation in a jumping flea, Section 6.7, p. 205
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting,
Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333
Energy transformation in a jumping flea, Section 6.7, p. 205
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting,
Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting,
Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting, Section 8.5, p. 278
Energy transformation in a jumping flea, Section 6.7, p. 205
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting, Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333
Energy transformation in a jumping flea, Section 6.7, p. 205
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting, Section 8.5, p. 278
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting,
Section 8.5, p. 278

The Basic Language of Chemistry

FPO

bchop_fgct

Chapter opening photo caption looks like this. It can vary in length, so the box will need to be adjusted as needed.

Chapter Overview

Chemistry is an active, evolving science that has vital importance to our world, in both the realm of nature and the realm of society. Its roots are ancient, but as we will soon see, chemistry is every bit a modern science. We will begin our study of chemistry at the macroscopic level, where we can see and measure the materials of which our world is made. In this chapter we will discuss the scientific method, which provides the framework for research not only in chemistry but in all other sciences as well. Next we will discover how scientists define and characterize matter. Then we will familiarize ourselves withe the systems of measurement used in the laboratory. Finally, we will spend some time learning how to handle numerical results of chemical measurremeents and solve numerical problems.

bopto_tx
 Chapter Outline

0.1 Chemistry is the study of matter and change 00
0.2 Matter is made of atoms and molecules 00
0.3 Compounds are represented by chemical formulas 00
0.4 Reactions are described by balanced chemical equations 00
0.5 Quantities of atoms and molecules can be described by mass or number 00
0.6 Stoichiometry is the quantitative study of mass and mole relationships in chemical reactions 00

Box: Major Experimental
Technique: Mass
Spectrometry 00

FPO

The Chinese characters for chemistry mean "The study of change." bch_fgct_a

bch_tbnm		
Table 4.1 Heats of Solution of Some Ionic Compounds		
Compo		$\Delta \boldsymbol{H}_{\text {soln }}$ (kJ/mol)
LiCl	-37.1	
CaCl_{2}	-82.8 ${ }^{\text {s }}$	exothe
NaCl	4.0	
KCl	17.2 r	endothermic
$\mathrm{NH}_{4} \mathrm{Cl}$	15.2	

11.2 The Relationsip Between Conjugatae Acid-Base Ionization Constants

We defined chemistry at the beginning of the chapter as the study of matter and the changes it undergoes. Matter is anything that occupies space and has mass. Matter includes things we can see and touch (such as water, earth, and trees), as well as things we cannot (such as air). Thus, everything in the universe has a "chemical" connection we can see and touch.

Summary of Rules for Writing Equilibrium Constant Expressions

A substance is a form of matter that has a definite (constant) composition and distinct properties. Examples are water, ammonia, table sugar (sucrose), gold, and oxygen. Substances differ from one another in composition and can be identified by their appearance, smell, taste, and other properties.Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2.
a. How many electrons are present in a particular atom? How many electrons are present in a particular atom?
b. What energies do individual electrons possess? How many electrons are present in a particular atom?
Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2.

$$
\mathrm{CaCO}_{3}(s)+\mathrm{CaO}(s)=\mathrm{CO}_{2}(g)
$$

Examples are water, ammonia, table sugar (sucrose), gold, and oxygen. Substances differ from one another in composition and can be identified by their appearance.

Method 1	Method 2	bch_lutt
$3.66+8.45=30.9$	$3.66+8.45=30.93$	
$30.9+2.11=65.2$	$30.93+2.11=65.3$	

The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2.

$\mathrm{B}_{2} \mathrm{H}_{6}$	diborane	bch_lu_a
CH_{4}	methane	
SiH_{4}	silane	
NH_{3}	ammonia	

Under certian conditions of pressure and temperature, most substances en exist in any one of the three states of matter: solid, liquid, or gas. Water, for example, can be solid ice, liquid water, or steam or eater vapor.

$$
\text { bch_eq_a } \mathrm{CaCO}_{3}(s)+\mathrm{CaO}(s)=\mathrm{CO}_{2}(g)
$$

[4.1]
The physical properites of a substance often depend on its state. most substances en exist in any one of the three states of matter: solid, liquid, or gas. Water, for example, can be solid ice, liquid water, or steam or eater vapor. The physical properites of a

Physics Today

A gas is a substance that is normally in the gaseous state at ordinary temperatures and pressures; a vapor is the gaseous form of any substance that is a liquid or a solid at normal temperatures and pressures.

FPO

Figure 1.3 (a) The output from an automated DNA sequencing machine. Each lane displays the sequence (indicated in different colors) obtained with a separate DNA sample. (b) Photovoltaic cells. (c) A silicon wafer being processed. (d) The leaf on the left was taken from a tobacco plant that was not genetically engineered but was exposed to tobacco hron worms. The leaf on the right was genetically engineered and is barely attached by the worms. The same technique can be applied to protect the leaves of other types of plants.
substance often depend on its state. Substances differ from one another in composition and can be identified by their appearance, smell, taste, and other properties.
» If a number is greater than 1 , then all the zeros written to the right of the decimal point count as significant figures.
» Potassium Bromide. The patassioum cation $\mathrm{K}+$ and the bromine anion $\mathrm{Br}-$ combine to form the ionic compound potassium bromide.
» Any digit that is not zero is significant. Thus 845 cm has three significant figures, 1.234 kg has four significant figures, and so on.

Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances

1. Elements are composed of extremely small particles called atoms. All atoms of a given element are identical, having the same size, mass, and chemical properties.
2. Compounds are composed of atoms of more than one element. In any compound, the ration of the numbers of atoms of any two of the elements.

Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances

This Is a Third Level Head

Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances, mixtures, elements.

D-Head Runs In The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2.
\dagger John Dalton (1766-1844). English chemist, mathmetician, and philosopher. In addition to the atomic theory, he also formulated several gas laws and gave the first detailed description of color blindness.
$\dagger \dagger$ John Dalton (1766-1844). English chemist, mathmetician, and philosopher.

FPO

Figure 1.3 Thomson's model of the atom, sometimes descibed as the "plum-pudding" modle, after a traditional English dessert containing raisins. The electrons are embedded in a uniform, positively charged sphere. © Harry Bliss. Originally published in the New Yorker Magazine.
bch_fgso

Metal from the Sea

bchba_tx
bchba_eq

Cagnesium is a valuable, lightweight metal used as a structural material as well as in alloys, in batteries, and in chemical synthesis.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{CaO}(\mathrm{~s})=\mathrm{CO}_{2}(\mathrm{~g})
$$

Earth's crust, it is cheaper to "mine" the metal from seawater. The classifications of matter.

Pressure Cookers

Chemists distinguish among several subcategories of matter based on composition and properties.
» If a number is greater than 1 , then all the zeros written to the right of the decimal point.
» Potassium Bromide. The patassioum cation K+ and the bromine anion Br - combine to form the ionic compound potassium bromide.
» Any digit that is not zero is significant. Thus 845 cm has three significant figures, 1.234 kg has four significant figures, and so on.

Chemists distinguish among several subcategories of matter based on composition and properties.

1. If a number is greater than 1 , then all the zeros written to the right of the decimal.
2. If a number is greater than 1 , then all the zeros written to the right of the decimal.
Chemists distinguish among several subcategories of matter based on composition and properties. Chemists distin-

FPO

bchba_fgnm bchba_fgct
Figure 1.3 Separating iron filings from a heterogeneous mixture. The same technique is used on a larger scale to separate iron and steel from nonmagnetic objects such as aluminum, glass, and plastics.
guish among several subcategories of matter based on composition and properties.

Unnumbered Table Per Survey	
Component	Melting Point (${ }^{\circ} \mathrm{C}$)
Bismuth (50%)	271
Cadmium (12.5%)	321
Lead (25%)	328

*Components are shown in percent by mass, and the melting point is that of the pure metal. Use for source or footnote.

Earth's crust, it is cheaper to "mine" the metal from seawater. The classifications of matter include substances, mixtures.

Earth's crust, it is cheaper to "mine" the metal from seawater. The classifications of matter.
bchba_tbtt

Straddle Head Example

Elements Compounds	Column	
H_{2} (molecular hydrogen)	HF (hydrogen fluoride)	0.5
$\mathrm{~N}_{2}$ (molecular nitrogen)	HCl (hydrogen chloride)	0.6
O_{2} (molecular oxygen)	HBr (hydrogen bromide)	1.2
turnover lines		

[^0]elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2. Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2. Chemists distinguish among several subcategories of matter based on composition and properties.

1. Elements are composed of extremely small particles called atoms. All atoms of a given element are identical, having the same size, mass.
2. Compounds are composed of atoms of more than one element. In any compound, the ration of the numbers of atoms of any two of the elements.
The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2. Substances differ from one another in composition and can be identified by their appearance, smell, taste, and other properties.

Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2. Examples are water, ammonia, table sugar (sucrose), gold, and oxygen. Substances differ from one another in composition and can be identified by their appearance.
bchea_tt

Example $19.1 \quad$ Calculating Molecular Mass

Calculate the molecular masses of the following compounds:
(a) sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ and (b) caffeine $\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}\right)$.

Strategy To calculate molecular mass, we need to count the number of each type of atom in the molecule and look up its atomic mass in the periodic table.

Solution The number of moles of EG in 651 g EG is:
(a) This is an alpha sublist entry example within an exersice.
(b) This is an alpha sublist entry example within an exersice this is an alpha sublist entry example within an exercise with a runover.

$$
\frac{10.50 \mathrm{~mol} \mathrm{EG}}{2.505 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}} 54.19 \mathrm{~mole} \mathrm{EG} / \mathrm{Kg} \mathrm{H}_{2} \mathrm{O} 54.19 \mathrm{~m}
$$

Check Because 6.07 g is smaller than the molar mass, the answer is reasonable.
Comment 6.07 g is smaller than the molar mass, the answer is reasonable. Calculate the boiling point and freezing point of a solution containing 478 g of ethylene glycol in 3202 g of water.

Practice Exercise Calculate the boiling point and freezing point of a solution containing 478 g of ethylene glycol in 3202 g of water. Calculate the boiling point and freezing point of a solution containing 478 g of ethylene glycol in 3202 g of water.

FPO

$\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$

Solution The number of moles of EG in 651 g EG is. To calculate molecular mass, we need to count the number of each type of atom in the molecule and look up its atomic mass in the periodic table.

Step 1: We can deduce the skeletal structure of the carbonate ion by recognizing that C is less electronegative than). Therefore, it is most likely to occupy a central position.
Step 2: Skeletal structure of the carbonate ion by recognizing that C is less electronegative than). Therefore, it is most likely to occupy a central position.
Step 3: Structure of the carbonate ion by recognizing that C is less electronegative than). Therefore, it is most likely to occupy a central position.

Practice Exercise Calculate the boiling point and freezing point of a solution containing 478 g of ethylene glycol in 3202 g of water.

Check Calculate the boiling point and freezing point of a solution containing 478 g of ethylene glycol in 3202 g of water.

bchea_lutt	Reactants	Products
bchea_lu	$\mathrm{Al}(4)$	$\mathrm{Al}(4)$
	$\mathrm{O}(6)$	$\mathrm{O}(6)$

(a) This is an alpha sublist entry example within an exersice.
(b) This is an alpha sublist entry example within an exersice this is an alpha sublist entry example within an exersice with a runover.

Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2. Examples are water, ammonia, table sugar (sucrose), gold, and oxygen. Substances

Example 19.2

Calculate the molecular masses of the following compounds:
(a) sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ and (b) caffeine $\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}\right)$.

Strategy To calculate molecular mass, we need to count the number of each type of atom in the molecule and look up its atomic mass in the periodic table.

Solution The number of moles of EG in 651 g EG is:
(a) This is an alpha sublist entry example within an exersice.
(b) This is an alpha sublist entry example within an exersice this is an alpha sublist.

$$
\frac{10.50 \mathrm{~mol} \mathrm{EG}}{2.505 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}} 54.19 \text { mole EG/Kg H} \mathrm{H}_{2} \mathrm{O} 54.19 \mathrm{~m}
$$

Check Because 6.07 g is smaller than the molar mass, the answer is reasonable.
differ from one another in composition and can be identified by their appearance, smell, taste, and other properties. Examples are water, ammonia, table sugar (sucrose), gold, and oxygen. Substances differ from one another in composition and can be identified by their appearance, smell, taste, and other properties.

11.3 | The Structure of the Atom

We defined chemistry at the beginning of the chapter as the study of matter and the changes it undergoes. Matter is anything that occupies space and has mass. Matter includes things we can see and touch (such as water, earth, and trees), as well as things we cannot (such as air).

Step 1: We can deduce the skeletal structure of the carbonate ion by recognizing that C is less electronegative.
Step 2: Skeletal structure of the carbonate ion by recognizing that C is less electronegative than). Therefore, it is most likely to occupy a central position.
Step 3: Structure of the carbonate ion by recognizing that C is less electronegative than). Therefore, it is most likely to occupy a central position.

We defined chemistry at the beginning of the chapter as the study of matter and the changes it undergoes. Matter is anything that occupies space and has mass. Matter includes things we can see and touch (such as water, earth, and trees), as well as things we cannot (such as air).

bcesu_tt

Chapter Summary

Section 1.1

» The arsenic in Napoleon's hair was detected using a technique called neutron activation. When arsenic-75 is bonbarded with high energy neutrons, it is converted to the radioactive As-76 isotope. The energyof the rays emitted by the radioactive isotoped is characterstic of arsenic and the intensity of the rays establishes how much arsenic is present in a sample.
» The arsenic in Napoleon's hair was detected using a technique called neutron activation.

Section 1.2

» The arsenic in Napoleon's hair was detected using a technique called neutron activation. When arsenic-75 is bonbarded with high energy neutrons.

bcekt_tt
 Key Words

Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206

Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process dother process, p. 208
Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208

Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207

Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206

bcepq_tt

Questions and Problems

(bcepq_ha) The Nature of Energy and Types of Energy bcepq_hb Review Questions

5.1 The arsenic in Napoleon's hair was detected using a technique called neutron activation. When arsenic75 is bonbarded with high energy neutrons, it is converted to the radioactive As-76 isotope.
5.2 The arsenic in Napoleon's hair was detected using a technique called neutron activation. When arsenic75 is bonbarded with high energy neutrons.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{CaO}(\mathrm{~s})=\mathrm{CO}_{2}(\mathrm{~g})
$$

5.3 The arsenic in Napoleon's hair was detected using a technique called neutron activation.
5.4 The arsenic in Napoleon's hair was detected using a technique called neutron activation.
5.5 The arsenic in Napoleon's hair was detected using a technique called neutron activation. When arsenic75 is bonbarded with high energy neutrons.
5.6 The arsenic in Napoleon's hair was detected using a technique called neutron activation.

Problems

5.7 When arsenic-75 is bonbarded with high energy neutrons, it is converted to the radioactive.

Unnumbered Table Per Survey		bcepq_tbtt
Component	Melting Point (${ }^{\circ} \mathrm{C}$)	bcepq_tben
Bismuth (50%)	271	bcepq_tbtx
Cadmium (12.5%)	321	
Lead (25%)	328	

*Components are shown in percent by mass, and the melting point is that of the bcepq_tbfn pure metal. Use for source or footnote.
5.121 When arsenic-75 is bonbarded with high energy neutrons, it is converted to the radioactive.

Unnumbered List entry	List entry
List entry	Unnumbered List entry

5.122 The arsenic in Napoleon's hair was detected.
(a) As-76 isotope. When arsenic-75 is bonbarded with high energy neutrons.
(b) As-76 isotope.
5.123 The arsenic in Napoleon's hair was detected.

bcepq_tt_a

Special Problems

5.123 The arsenic in Napoleon's hair was detected using a technique called neutron acti b்cepq_ln_a
(a) Does a single molecule have a temperature?
(c) Comment on the validity of the previous statements.
15.124 The arsenic in Napoleon's hair was detected using a technique called neutron activation. When arsenic-75
is bonbarded with high energy neutrons, it is converted to the radioactive As-76 isotope. When arsenic- 75 is bonbarded with high energy neutrons, it is converted to the radioactive As-76 isotope. As-76 isotope. When arsenic-75 is bonbarded with high energy neutrons, it is converted to the radioactive As-76 isotope.

Answers to Practice Exercises

3.1 10.81 amu 3.2 3.59 moles. 3.3 $2.57 \mathrm{X}_{10}{ }^{3} \mathrm{~g}$. 3.4 8.49 X
$10^{21} \mathrm{~K}$ atoms. 3.5 32.04 amu . $\mathbf{3 . 6} 1.66$ moles. 3.7 5.81 X 10^{24} H atoms. $3.8 \mathrm{H}: 2.055 \%$; S: 32.69%; O: 65.25%. $3.9 \mathrm{KMnO}_{4}$ (potassium permanganate). $\mathbf{3 . 1 0} 196$ g. $\mathbf{3 . 1 1} \mathrm{B}_{2} \mathrm{H}_{6} . \mathbf{3 . 1 2} \mathrm{Fe}_{2} \mathrm{O}_{3}$ $+3 \mathrm{CO} 2 \mathrm{Fe}+3 \mathrm{CO}_{2} 3.13235 \mathrm{~g} .3 .140 .769$ g. 3.15 (a) 234 g ,
(b) 234 g. 3.16 (a) 863 g, (b) $93.0 \% .3 .17 \mathrm{H}: 2.055 \%$; S: 32.69%; O: 65.25%. $3.18 \mathrm{KMnO}_{4}$ (potassium permanganate). 3.19196 g. $\mathbf{3 . 2 0} \mathrm{B}_{2} \mathrm{H}_{6} . \mathbf{3 . 2 1} \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} 2 \mathrm{Fe}+3 \mathrm{CO}_{2} \mathbf{3 . 2 2}$ 235 g. 3.230 .769 g. 3.24 (a) 234 g, (b) 234 g. 3.24 (a) 863 g, (b) 93.0%.

Derivation of the Names of Elements*

eap_tben	Elements	Symbol	Atomic No.	Atomic Mass	Date of Discovery	Discoverer and Nationality	Derivation
eap_tbtx	Actinium	Ac	89	227	1899	A. Debierne (Fr.)	Gr. aktis, beam or ray
	Aluminum	Al	13	26.98	1827	F. Woehler (Ge.) compound in which it was discovered; derived from L. alumen, astringent taste	Alum, the aluminum
	Americium	Am	95	(243)	1944	A. Ghiorso (USA) R.A. James (USA) G.T. Seaborg (USA) S.G. Thompson (USA)	The Americas
	Antimony	Sb	51	121.8	Ancient		L. antimonium (anti, opposite of; monium, isolated condition), so named because it is a substance which combines readily; symbol L. stibium, mark
	Actinium	Ac	89	227	1899	A. Debierne (Fr.)	Gr. aktis, beam or ray
	Aluminum	Al	13	26.98	1827	F. Woehler (Ge.)	Alum, the aluminum compound in which it was discovered; derived from L. alumen, astringent taste
	Americium	Am	95	(243)	1944	A. Ghiorso (USA) R.A. James (USA) G.T. Seaborg (USA) S.G. Thompson (USA)	The Americas
	Antimony	Sb	51	121.8	Ancient		L. antimonium (anti, opposite of; monium, isolated condition), so named because it is a tangible (metallic) substance which combines readily; ymbol L. stibium, mark
	Actinium	Ac	89	227	1899	A. Debierne (Fr.)	Gr. aktis, beam or ray
	Aluminum	Al	13	26.98	1827	F. Woehler (Ge.)	Alum, the aluminum compound in which it was discovered

[^1]
Appendix 2
 Units for the Gas Constant

In this appendix we will see how the gas constant R can be expressed in units J / K mol. Our first step is to derive a realtionship between atm and pascal. We start with:

$$
\begin{aligned}
& \log 6.7 \times 10^{24}=23.17 \\
& \log 6.7 \times 10^{24}=23.17
\end{aligned}
$$

In each case, the logarithm of the numcer can be obtained by inspection. The common, or base-10, logarithm of any number is the power to which 10 must be raised to equal the number. The following are examples that illustrate this realtionship.

Logarithms

The common, or base -10 , logarithm of any number is the power to which 10 must be raised to equal the number. The following are examples that illustrate this realtionship. The common, or base-10, logarithm of any number is the power to which 10 must be raised to equal the number. The following are examples that illustrate this realtionship.

Logarithms

Common Logorithms

The concept of the logarithms is an extension of the concept of exponents, which is discussed in Chapter 1. The common, or base-10, logarithm of any number is the power to which 10 must be raised to equal the number. The following are examples that illustrate this realtionship.

eap_lutt	Logarithm	Exponent
eap_lu	$\log 1=0$	$10^{0}=1$
	$\log 10=1$	$10^{1}=10$
	$\log 100=2$	$10^{2}=100$

In each case, the logarithm of the numcer can be obtained by inspection. The common, or base-10, logarithm of any number is the power to which 10 must be raised to equal the number. The following are examples that illustrate this realtionship. The common, or base-10, logarithm of any number is the power to which 10 must be raised to equal the number. The following are examples that illustrate this realtionship. The common, or base-10, logarithm of any number is the power to which 10 must be raised to equal the number.

Inorganic Substances				
Substance	(kJ/mol)	(kJ/mol)	(J/K . mol)	Cp
$\mathrm{Ag}(\mathrm{s})$	0	0	42.7	42.7
$\mathrm{Ag}^{1}(\mathrm{aq})$	105.9	77.1	73.9	73.9
$\mathrm{AgCl}(\mathrm{s})$	2127.0	2109.7	96.1	96.1
$\mathrm{Ag}(\mathrm{s})$	0	0	42.7	42.7
$\mathrm{Ag}^{1}(\mathrm{aq})$	105.9	77.1	73.9	73.9

The number in parentheses is the number of the section in which the term first appears.

A
absolute temperature scale. A temperature scale that uses the absolute zero of tem-
perature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature zero of. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)

B

bsolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
bccuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
bsolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
bccuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
bsolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature that uses the absolute zero of temperature as the lowest temperature. (5.3)
bccuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
bsolute temperature scale. A temperature scale that uses the absolute.

Answers

Chapter 1

1.4 (a) Hypothesis. (b) [Xe]6s24f145d5 1.12 (a) Physical change. (b) $8.49+10 \mathrm{~K}$ atoms. (c) Physical change. (d) Chemical change (e) Physical change. 1.14 (a) K. (b) Sn. (c) Cr. (d) B. $\mathbf{1 . 4}$ (a) $\mathrm{Zn}(\mathrm{s}) 1 \mathrm{Cu} 21$ (aq) Zn 21 (aq) 1 Cu (s) $\mathbf{1 . 1 2}$ (a) Physical. (b) Chemical change. (c) Physical change. (d) $8.49+10 \mathrm{~K}$ atoms (e) Physical change. 1.14 (a) K. (b) Cu 21 (aq) Zn 21 (aq) $1 \mathrm{Cu}(\mathrm{s})$. 1.4 (a) Hypothesis. (b) [Xe]6s24f145d5 1.12 (a) Physical change. (b) $8.49+10 \mathrm{~K}$ atoms. (c) Physical change. (d) Chemical change. (e) Physical change. 1.14 (a) K. (b) Sn. (c) Cr. (d) B.
1.4 (a) Hypothesis. (b) [Xe]6s24f145d5 1.12 (a) Physical change. (b) Zn (s) 1 Cu 21 (aq) Zn 21 (aq) $1 \mathrm{Cu}(\mathrm{s})$. (d) $8.49+10 \mathrm{~K}$ atoms (e) Physical change. 1.14 (a) K. (b) Sn. (c) Cr. (d) B.
1.4 (a) Hypothesis. (b) Law. (c) Theory 1.12 (a) Physical change. (b) $8.49+10 \mathrm{~K}$ atoms. (c) Physical change. (d) Chemical change (e) Physical change. 1.14 (a) K. (b) Sn. (c) Cr. (d) B.
1.4 (a) Hypothesis. (b) [Xe]6s24f145d5 1.12 (a) Physical change. (b) Chemical change. (c) [Xe]6s24f145d5 (e) Physical change. 1.14 (a) K. (b) Sn. (c) Cr. (d) B. (e) Cr. (f) B (g) Cr. (h) B 1.4 (a) Hypothesis. (b) Law. (c) Theory 1.12 (a) Physical change. (b) Chemical change. (c) Physical change. (d) Chemical change (e) Physical change. 1.14 (a) K. (b) Sn. (c) Cr. (d) B.

Chapter 2

2.4 (a) Hypothesis. (b) Law. (c) Theory 2.12 (a) Physical change. (b) Chemical change. (c) Physical change. (d) Chemical change (e) Physical change. 2.14 (a) $\mathrm{Zn}(s)$ Ú $\mathrm{Cu}^{2 \dot{U}}(a q) \mathrm{Zn}^{2 \tilde{U}}(a q)$ ú $\mathrm{Cu}(s) 2.4$ (a) Hypothesis. (b) Law. (c) Theory 2.12 (a) Physical change. (b) Chemical change. (c) Physical change. (d) Chemical change (e) Physical change. 2.14 (a) K. (b) Sn. (c) Cr. (d) B. 2.4 (a) Hypothesis. (b) Law. (c) Theory 2.12 (a) Physical change. (b) $\mathrm{Zn}(s)$ Ú $\mathrm{Cu}^{2 \dot{U}}(a q) \mathrm{Zn}^{2 \dot{U}}(a q)$ Ú $\mathrm{Cu}(s)$. (d) Chemical change (e) Physical change. 2.14 (a) K. (b) $[\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{5}$ 2.4 (a) Hypothesis. (b) Law. (c) Theory 2.12 (a) Physical change. (b) Chemical change. (c) $[\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{5}$ (d) Chemical change (e) Physical change. 2.14 (a) K. (b) Sn. (c) Cr. (d) B. 2.4 (a) Hypothesis. (b) Law. (c) Theory 2.12 (a) Physical change. (b) $8.49+10 \mathrm{~K}$ atoms. (c) $\mathrm{Zn}(s)$ ú $\mathrm{Cu}^{2 \mathcal{U}}(a q) \mathrm{Zn}^{2 U(}(a q)$ ú $\mathrm{Cu}(s)$ (e) Physical change. 2.14 (a) K. (b) Sn . (c) Cr. (d) B. 2.4 (a) Hypothesis. (b) Law. (c) Theory 2.12 (a) Physical change. (b) Chemical change. (c) Physical change. (d) $8.49+$ 10K atoms. (e) Physical change. 2.14 (a) K. (b) Sn . (c) Cr . (d) B. 2.4 (a) Hypothesis. (b) Law. (c) Theory 2.12 (a) Physical change. (b) $8.49+10 \mathrm{~K}$ atoms. (c) $[\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{5}$ (d) Physical change. 2.14 (a) K. (b) Sn . (c) Cr . (d) B. 2.4 (a) $\mathrm{Zn}(s)$ ú $\mathrm{Cu}^{2 \dot{U}}(a q) \mathrm{Zn}^{20}(a q)$ Ú $\mathrm{Cu}(s) 2.12$ (a) Physical. (b) Chemical change. (c) Physical change. (d) $8.49+10 \mathrm{~K}$ atoms. (e) Physical change. 2.14 (a) K. (b) Sn. (c) Cr. (d) B. 2.14 (a) K. (b) Sn. (c) Cr. (d) B. 2.4 (a) Hypothesis. (b) Law. (c) Theory 2.12
(a) Physical change. (b) Chemical change. (c) Physical change.
(d) Chemical change (e) Physical change. 2.14 (a) K. (b) Sn.
(c) Cr. (d) B. 2.4 (a) Hypothesis. (b) Law. (c) Theory 2.12 (a) Physical change. (b) Chemical change. (c) Physical change. (d) Chemical change (e) Physical change.
2.14 (a) $\mathrm{Zn}(s)$ ú $\mathrm{Cu}^{2 \dot{6}}(a q) \mathrm{Zn}^{20}(a q)$ ú $\mathrm{Cu}(s)$ (b) Sn . (c) Cr . (d) B. $\mathbf{2 . 4}$ (a) Hypothesis. (b) Law. (c) Theory 2.12 (a) Physical change. (b) $8.49+10 \mathrm{~K}$ atoms. (c) Physical change. (d) Chemical change (e) Physical change. 2.14 (a) K. (b) Sn. (c) Cr. (d) B. 2.4 (a) Hypothesis. (b) Law. (c) Theory 2.12 (a) Physical change. (b) Chemical change. (c) Physical change. (d) $8.49+$ 10 K atoms. (e) Physical change. 2.14 (a) $\mathrm{Zn}(s)$ Ú $\mathrm{Cu}^{2 U}(a q)$ $\mathrm{Zn}^{2 \dot{U}}(a q)$ Ú $\mathrm{Cu}(s)$.

Chapter 3

3.4 (a) Hypothesis. (b) $[\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{5} 3.12$ (a) Physical change. (b) $8.49+10 \mathrm{~K}$ atoms. (c) Physical change. (d) Chemical change (e) Physical change. 3.14 (a) K. (b) Sn. (c) Cr. (d) B. 3.4 (a) $\mathrm{Zn}(s)$ Ú $\mathrm{Cu}^{2 \tilde{U}}(a q) \mathrm{Zn}^{2 \dot{U}}(a q)$ Ú $\mathrm{Cu}(s) 3.12$ (a) Physical.
(b) Chemical change. (c) Physical change. (d) Chemical change (e) Physical change. $\mathbf{3 . 1 4}$ (a) $\mathrm{Zn}(s)$ ú $\mathrm{Cu}^{2 \tilde{U}}(a q) \mathrm{Zn}^{2 \tilde{U}}(a q)$ ú $\mathrm{Cu}(s) .3 .4$ (a) Hypothesis. (b) Law. (c) Theory $\mathbf{3 . 1 2}$ (a) Physical change. (b) Chemical change. (c) Physical change. (d) $8.49+$ 10 K atoms. (e) Physical change. 3.14 (a) K. (b) Sn. (c) Cr . (d) B. 3.4 (a) Hypothesis. (b) $[\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{5} 3.12$ (a) Physical change. (b) $8.49+10 \mathrm{~K}$ atoms. (c) Physical change.
(d) Chemical change (e) Physical change. 3.123 .4
(a) Hypothesis. (b) Law. (c) Theory $\mathbf{3 . 1 2}$ (a) Physical change.
(b) Chemical change. (c) Physical change. (d) Chemical change
(e) Physical change. 3.14 (a) K. (b) Sn. (c) Cr. (d) B.
3.4 (a) Hypothesis. (b) Sn. (c) Cr. (d) B (b) Sn. (c) Cr. (d) B (b) Law. (c) Theory 3.12 (a) Physical change. (b) Chemical change. (c) $[\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{5}$ (e) Physical change. $\mathbf{3 . 1 4}$ (a) K. (b) Sn. (c) Cr. (d) B. 3.4 (a) Hypothesis. (b) Law. (c) Theory 3.12 (a) Physical change. (b) Chemical change. (c) $\mathrm{Zn}(s)$ ú $\mathrm{Cu}^{2 \dot{U}}(a q) \mathrm{Zn}^{2 U(}(a q)$ Ú $\mathrm{Cu}(s)$ (e) Physical change.
3.13 (a) $\mathrm{Zn}(s)$ Ú $\mathrm{Cu}^{2 \tilde{U}}(a q) \mathrm{Zn}^{2 \dot{U}}(a q)$ ú $\mathrm{Cu}(s)$.
(c) Physical change. (d) Chemical change (e) Physical change. 3.14 (a) K. (b) Sn. (c) Cr. (d) B. 3.4 (a) Hypothesis. (b) Law.
(c) Theory $\mathbf{3 . 1 2}$ (a) $\mathrm{Zn}(s)$ ú $\mathrm{Cu}^{2 \dot{U}}(a q) \mathrm{Zn}^{2 \dot{U}}(a q)$ ú $\mathrm{Cu}(s)$.
(c) Physical change. (d) Chemical change (e) Physical change. 3.15 (a) K. (b) Sn. (c) Cr. (d) B. 3.4 (a) Hypothesis. (b) Law. (c) Theory 3.12 (a) Physical change. (b) Chemical change. (c) Physical change. (d) Chemical change (e) Physical change. 3.12 (a) Physical change. (b) Chemical change. (c) $\mathrm{Zn}(s)$ ú $\mathrm{Cu}^{2 \dot{G}}(a q) \mathrm{Zn}^{2 U(}(a q)$ Ú $\mathrm{Cu}(s)$ (e) Physical change.
3.13 (a) $\mathrm{Zn}(s)$ Ú $\mathrm{Cu}^{2 U}(a q) \mathrm{Zn}^{2 U}(a q)$ Ú $\mathrm{Cu}(s)$.
(c) Physical change. (d) Chemical change (e) Physical change. 3.14 (a) K. (b) Sn. (c) Cr. (d) B. 3.4 (a) Hypothesis. (b) Law.
(c) Theory $\mathbf{3 . 1 2}$ (a) $\mathrm{Zn}(s)$ ú $\mathrm{Cu}^{2 \dot{U}}(a q) \mathrm{Zn}^{20}(a q)$ ú $\mathrm{Cu}(s)$.
(c) Physical change. (d) Chemical change (e) Physical change. 3.15 (a) K. (b) Sn. (c) Cr. (d) B. 3.4 (a) Hypothesis. (b) Law. (c) Theory 3.12 (a) Physical change. (b) Chemical change.

Chapter 1

Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography

Chapter 2

Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography

Chapter 3

Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication.

Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography.

Chapter 4

Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Photography. Page iv: © Fritz Goro/TimePix/ Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp

Chapter 5

Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life

Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp

Chapter 6

Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Syndication. Page v: © Ken Kar Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz

A

Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
ionization constant of, 612
titrations of, 664
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
ionization constant of, 612
titrations of, 664
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
Absoloute Zero, 163

Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612, 664, 965
ionization constant of, 612
titrations of, 664
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
ionization constant of, 612
titrations of, 664
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
ionization constant of, 612
titrations of, 664
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163

Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
ionization constant of, 612
titrations of, 664
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
ionization constant of, 612
titrations of, 664
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163

Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$

B

Bbsoloute Zero, 163
Bcetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
ionization constant of, 612
titrations of, 664
Bbsolute antropy, 736, 742
Bbsolute temperature scale, 17, 163
Bbsoloute Zero, 163
Bcetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Bbsolute antropy, 736, 742
Bbsolute temperature scale, 17, 163
Bbsoloute Zero, 163
Bcetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Bbsolute antropy, 736, 742
Bbsolute temperature scale, 17, 163
Bbsoloute Zero, 163
Bcetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Bbsolute antropy, 736, 742
Bbsolute temperature scale, 17, 163
Bbsoloute Zero, 163
Bcetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Bbsolute antropy, 736, 742
Bbsolute temperature scale, 17, 163
Bbsoloute Zero, 163
Bcetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612, 664, 965
Bbsoloute Zero, 163
Bcetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612, 664, 965
ionization constant of, 612
titrations of, 664
Bbsolute antropy, 736, 742
Bbsolute temperature scale, 17, 163
Bbsoloute Zero, 163
Bcetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Bbsolute antropy, 736, 742
Bbsolute temperature scale, 17, 163
Bbsoloute Zero, 163
Bcetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Bbsolute antropy, 736, 742
Bbsolute temperature scale, 17, 163
Bbsoloute Zero, 163
Bcetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Bbsolute antropy, 736, 742
Bbsolute temperature scale, 17, 163
Bbsoloute Zero, 163
Bcetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Bbsolute antropy, 736, 742
Bbsolute temperature scale, 17, 163
Bbsoloute Zero, 163

4

Chapter

Chemical Bonding in Polyatomic Molecule

Molecular Geometry and Interaction

Chapter Outline

4.1 Chemistry is the study of matter and

 change 004.2 Matter is made of atoms and molecules 00

4.3 Compounds are represented by chemical formulas 00

4.4 Reactions are described by balanced chemical equations 00

4.5 Quantities of atoms and molecules can be described by mass or number 00
4.6 Stoichiometry is the quantitative study of mass and mole relationships in chemical reactions 00

[^2]

Chemistry is an active, evolving science that has vital importance to our world, in both the realm of nature and the realm of society. Its roots are ancient, but as we will soon see, chemistry is every bit a modern science. We will begin our study of chemistry at the macroscopic level, where we can see and measure the materials of which our world is made. In this chapter we will discuss the scientific method, which provides the framework for research not only in chemistry but in all other sciences as well. Next we will discover how scientists define and characterize matter. Then we will familiarize ourselves withe the systems of measurement used in the laboratory. Finally, we will spend some time learning how to handle numerical results of chemical measurremeents and solve numerical problems.

Metal from the Sea

Cagnesium is a valuable, lightweight metal used as a structural material as well as in alloys, in batteries, and in chemical synthesis.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{CaO}(\mathrm{~s})=\mathrm{CO}_{2}(\mathrm{~g})
$$

Earth's crust, it is cheaper to "mine" the metal from seawater. The classifications of matter.

Pressure Cookers

Chemists distinguish among several subcategories of matter based on composition and properties.
» If a number is greater than 1 , then all the zeros written to the right of the decimal point.
» Potassium Bromide. The patassioum cation K+ and the bromine anion Br - combine to form the ionic compound potassium bromide.
» Any digit that is not zero is significant. Thus 845 cm has three significant figures, 1.234 kg has four significant figures, and so on.

Chemists distinguish among several subcategories of matter based on composition and properties.

1. If a number is greater than 1 , then all the zeros written to the right of the decimal.
2. If a number is greater than 1 , then all the zeros written to the right of the decimal.

Chemists distinguish among several subcategories of matter based on composition and properties. Chemists distin-

FPO

Figure 1.3 Separating iron filings from a heterogeneous mixture. The same technique is used on a larger scale to separate iron and steel from nonmagnetic objects such as aluminum, glass, and plastics.
guish among several subcategories of matter based on composition and properties.

Unnumbered Table Per Survey

Component	Melting Point (${ }^{\circ} \mathrm{C}$)
Bismuth (50%)	271
Cadmium (12.5%)	321
Lead (25%)	328

*Components are shown in percent by mass, and the melting point is that of the pure metal. Use for source or footnote.

Earth's crust, it is cheaper to "mine" the metal from seawater. The classifications of matter include substances, mixtures.

Earth's crust, it is cheaper to "mine" the metal from seawater. The classifications of matter.

Cagnesium is a valuable, lightweight metal used as a structural material as well as in alloys, in batteries, and in chemical synthesis.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{CaO}(\mathrm{~s})=\mathrm{CO}_{2}(\mathrm{~g})
$$

Earth's crust, it is cheaper to "mine" the metal from seawater. The classifications of matter. Cagnesium is a valuable, lightweight metal used as a structural material as well as in alloys, in batteries, and in chemical synthesis.

Pressure Cookers

Chemists distinguish among several subcategories of matter based on composition and properties. Cagnesium is a valuable, lightweight metal used as a structural material as well as in alloys, in batteries, and in chemical synthesis.
» If a number is greater than 1 , then all the zeros written to the right of the decimal point. If a number is greater than 1 , then all the zeros written to the right of the decimal point. If a number is greater than 1 , then all the zeros written to the right of the decimal point.
» Potassium Bromide. The patassioum cation K+ and the bromine anion Br - combine to form the ionic compound potassium bromide.
» Any digit that is not zero is significant. Thus 845 cm has three significant figures, 1.234 kg has four significant figures, and so on.
Chemists distinguish among several subcategories of matter based on composition properties. Chemists distinguish
among several subcategories of matter based on composition and properties. Cagnesium is a valuable, lightweight metal used as a structural material as well as in alloys, in batteries, and in chemical synthesis.

1. If a number is greater than 1 , then all the zeros written to the right of the decimal. If a number is greater than 1 , then all the zeros written to the right of the decimal.
2. If a number is greater than 1 , then all the zeros written to the right of the decimal.
3. If a number is greater than 1 , then all the zeros written to the right of the decimal. If a number is greater than 1 , then all the zeros written to the right of the decimal.

Chemists distinguish among several subcategories of matter based on composition and properties. Cagnesium is a valuable, lightweight metal used as a structural material as well as in alloys, in batteries, and in chemical synthesis. Chemists distinguish among several subcategories of matter based on composition and properties. Cagnesium is a valuable, lightweight metal used as a structural material as well as in alloys, in batteries, and in chemical synthesis. Chemists distinguish among several subcategories of matter based on composition and properties. Cagnesium is a valuable, lightweight metal used as a structural material as well as in alloys, in batteries, and in chemical synthesis. Chemists distinguish among several subcategories of matter based on composition and properties.

Study Hint

If you have a clear idea of what you want to accomplish before you begin to read a chapter. your reading will be more effective. The questions in this chapter outlineas well as those in the subheadings of each section-can serve as a checklist for mea bchfa_tx progress as your read. A clear picture of what questions are going to be addressed and where the answers will be found forms a mental road map to guide you through the chapter. Take a few minutes to study the outline and fix this road map in your mind. It will be time well spent.

11.2 The Relationsip Between Conjugatae Acid-Base Ionization Constants

We defined chemistry at the beginning of the chapter as the study of matter and the changes it undergoes. Matter is anything that occupies space and has mass. Matter includes things we can see and touch (such as water, earth, and trees), as well as things we cannot (such as air). Thus, everything in the universe has a "chemical" connection we can see and touch.

Summary of Rules for Writing Equilibrium Constant Expressions

A substance is a form of matter that has a definite (constant) composition and distinct properties. Examples are water, ammonia, table sugar (sucrose), gold, and oxygen. Substances differ from one another in composition and can be identified by their appearance, smell, taste, and other properties.Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2.

Mass is a measure of an object's inertia, the property that causes it to resist a change in its motion.

Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2.

Aristole's ideas on motion, although not capable of making quantitative predictions, provided explanations that were widely accepted for many centuries and that fit well with some of our own common sense thinking.

Examples are water, ammonia, table sugar (sucrose), gold, and oxygen. Substances differ from one another in composition and can be identified by their appearance.

Method 1	Method 2
$3.66+8.45=30.9$	$3.66+8.45=30.93$
$30.9+2.11=65.2$	$30.93+2.11=65.3$

The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2.

$\mathrm{B}_{2} \mathrm{H}_{6}$	diborane
CH_{4}	methane
SiH_{4}	silane
NH_{3}	ammonia

Under certian conditions of pressure and temperature, most substances cn exist in any one of the three states of matter: solid, liquid, or gas. Water, for example, can be solid ice, liquid water, or steam or eater vapor.

$$
\begin{equation*}
\mathrm{CaCO}_{3}(s)+\mathrm{CaO}(s)=\mathrm{CO}_{2}(g) \tag{4.1}
\end{equation*}
$$

The physical properites of a substance often depend on its state. most substances en exist in any one of the three states of matter: solid, liquid, or gas. Water, for example, can be solid ice, liquid water, or steam or eater vapor. The physical properites of a

Further Readings

Espenson, J.H.: Chemical Kinetics and Reaction Mechanisms, 2d ed., McGraw-Hill, 1995
Eyring, H., D. Henderson, and W. Jost (eds.): Physical Chemistry: And Advanced Treatise, Academic, 1967-1975
Frost, W.: Theory of Unimolecular Reactions, Academic, 1973.
Franks, F. (ed.); Water: A Comprehensive Treatise, vols. 1-7, Plenum, 1972-1982.
Friebolin, H.: Basic One- and Two-Dimensional NMR

Spectroscopy, 3d ed., Wiley, 1998
Espenson, J.H.: Chemical Kinetics and Reaction Mechanisms, 2d ed., McGraw-Hill, 1995
Eyring, H., D. Henderson, and W. Jost (eds.): Physical Chemistry: And Advanced Treatise, Academic, 1967-1975.
Frost, W.: Theory of Unimolecular Reactions, Academic, 1973.
Franks, F. (ed.); Water: A Comprehensive Treatise, vols. 1-7, Plenum, 1972-1982.

Design B Chemistry/Physics

The Molecular Nature of Matter and Change

yutivix significant contributions by
ก10 ${ }^{2}$ Taymond Chang
thpar_-a Williams College

C-0	C-20	C-17	C-0
M-0	M-0	M-0	M-0
Y-25	Y-60	Y-8	Y-0
K-10	K-0	K-8	K-10
C-90	C-25	C-100	C-0
M-39	M-0	M-25	M-0
Y-0	Y-100	Y-25	Y-0
K-0	K-40	K-0	K-15
C-98	C-35	C-100	C-0
M-47	M-0	M-40	M-0
Y-0	Y-100	Y-40	Y-0
K-5	K-45	K-0	K-50
C-100	C-35	C-100	C-0
M-55	M-0	M-44	M-0
Y-0	Y-100	Y-44	Y-0
K-15	K-55	K-10	K-75

University Chemistry

About the Cover

This is filler copy for placement only that will describe the cover image and it's significance to chemistry. This is filler copy for placement only that will describe the cover image and it's significance to chemistry. This is filler copy for placement only that will describe the cover image and it's significance to chemistry. This is filler copy for placement only that will describe the cover image and it's significance to chemistry.

To Deb, Morgan, Ava, and Brynna with all my love

- David -

About the Author

faa_au

Brian Laird was born in Hong Kong and grew up in Shanghai and Hong Kong, China. He received his B.Sc. degree in chemistry from London University, England, and his Ph.D. in chemistry from Yale University. After doing post doctoral research at Washington University and teaching for a year at Hunter College of the City University of New York, he joined the chemistry department at Williams College, where he has taught since 1968. Professor Laird has written books on physical chemistry, industrial chemistry, and physical science. He has also coauthored books on the Chinese Language, children's picture books, and a novel for juvenile readers. He received his B.Sc. degree in chemistry from London University, England, and his Ph.D. in chemistry from Yale University. After doing post doctoral research at Washington University and teaching for a year at Hunter College of the City University of New York, he joined the chemistry department at Williams College, where he has taught since 1968. Professor Laird has written books on physical chemistry, industrial chemistry, and physical science. He has also coauthored books on the Chinese Language, children's picture books, and a novel for juvenile readers.

Brief Contents

fbt_tx 0 The Basic Language of Chemistry 0
1 Quantum Theory and the Electronic Structure of Atoms 00
2 Many-electron Atoms and the Periodic Table 00
3 The Chemical Bond 000
4 Chemical Bonding in Polyatomic Molecules: Molecular Geometry and Interaction 000
5 States of Matter: Gases, Liquids, and Solids 000
6 Thermochemistry: Energy in Chemical Reactions 000
7 Entropy, Free Energy and the Second Law of Thermodynamics 000
8 Physical Equilibrium 000
9 Chemical Equilibrium 000
10 Acids and Bases 000
11 Solution Equilibria 000
12 Electrochemistry 000
13 Chemical Reaction Kinetics 000
14 Atmospheric Chemistry 000
15 Chemistry of Metals 000
16 Organic Chemistry 000
17 Synthetic and Natural Organic Polymers 000
18 Nuclear Chemistry 000
Appendix 1 Mathematical Background A-00
Appendix 1 Thermodynamic Data at 1 bar and $25^{\circ} \mathrm{C}$ A-00
Appendix 1 Thermodynamic Data at 1 atm and $25^{\circ} \mathrm{C}$ A-00
Appendix 1 Title for Appendix Here A-00

Expanded Contents

fto_tx Preface 0

FPO

0 The Basic Language of Chemistry 0
0.1 Chemistry is the Study of Matter and Change 00Summary of Rules for Writing Constant Expressions 00
0.2 Matter is Made of Atoms and Molecules 00Summary of Rules for Writing Constant Expressions 00
0.3 Compounds are Represented by Chemical Formulas 00
0.4 Reactions are Described as Balanced Chemical Equations 00
0.5 Quantities of Atoms and Molecules can be Described by Mass or Number 00
0.6 Stoichiometry is the Quantitative Study of Mass and Mole Relationships in Chemical Reactions 00
Box: Major Experimental Technique: Mass Spectometry 00Chapter Summary
Key WordsQuestions and ProblemsSpecial Problems
1 Quantum Theory and the Electronic Structure of Atoms 00
1.1 Classical Physics Does Not Adequately Describe the Interaction of Light with Matter 00
Summary of Rules for Writing Constant Expressions 00
Summary of Rules for Writing Constant Expressions 00
1.2 The Bohr Model Was an Early Attempt at a Quantum Theory of Atoms 0
1.3 Matter has Wavelike Properties Described by the Schrodinger Equation 00
1.4 The Hydrogen Atom is an Exactly Solvable Quantum- Mechanical System 00
Box: Major Experimental Technique: Electron Microscopy 00
2 Many-Electron Atoms and the Periodic Table 00
2.1 The Wavefunctions of Many-Electron Atoms can be Described to a Good Approximation Using Atomic Orbitals 00Summary of Rules for Writing Constant Expressions 00
2.2 Electron Configurations of Many-Electron Atoms are Constructed using the Aufbau (or "Building Up") Principle 00
2.3 The Periodic Table Has a History that Predates Quantum Mechanics 00
16.3 The structure and Properties of Organic Compounds are Greatly Influenced by the Presence of Functional Groups 00
16.4 The Petroleum Industry is a Major Source of Organic Compounds 00
16.5 Nuclear Magnetic Resonance (NMR) Spectroscopy can be Used to Identify and Characterize Organic Compounds 00
16.6 Stoichiometry is the Quantitative Study of Mass and Mole Relationships in Chemical Reactions 00
17 Synthetic and Natural Organic Polymers 00
17.1 Properties of Polymers 0
17.2 Synthetic Organic Polymers 00
17.3 Proteins 00
17.4 Nucleic Acids 00
Box: The Discovery of the Double Helix 00
Box: The Human Genome 00
18 Nuclear Chemistry 00
18.1 Nuclear Chemistry is the Study of Changes Involving Atomic Nuclei 00
18.2 The Stability of a Nucleus is Determined Primarily by its Neutron to Proton Ratio 00
18.3 Radioactive Decay is a First-Order Kinetic Process 00
18.4 New Isotopes can be Produced Through the Process of Nuclear Transmutation 00
18.5 The splitting of a Large Nucleus into Smaller Nuclei is Called Nuclear Fission 00
18.6 In Nuclear Fusion Small Nuclei Merge Through Collision to Form Larger Nuclei 00
18.7 Radiactive and Stable Isotopes Alike Have Many Applications in Science and Medicine 00
18.8 Radiation can Have Profound Effects on Biological Systems 00
Appendix 1 Mathematical Background 00
A1.1 Differential and Integral Calculus 00
A1.2 Simple Differential Equations 00
A1.3 Finding Roots of Polynomials 00
A1.4 Matrix Manipulations 00
Appendix 2 Thermodynamic Data at 1 bar and 25° 00
Glossary G-1
Credits C-1
Index. I-I

Preface

This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section.

This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section.

New and Improved Changes

We define the main goal of this edition is to further improve areas that will facilitate the instructor and aid students in important areas such as organization, art program, readability, and media.
» The chapter on coordination chemistry has been moved to near the end of the book.
» The main goal of this edition is to further improve areas that will faciliate the student to learn better.
» The chapter on coordination chemistry.
The main goal of this edition is to further improve areas that will facilitate the instructor and aid students in important areas such as organization, art program, readability, and media.

Readability

1. New title reflecting the content of this text is for a one-year introductory chemistry course.
2. The chapter on coordination chemistry has been moved to near the end of the book.
3. The chapter on coordination chemistry has been moved to near the end of the book.
The main goal of this edition is to further improve areas that will facilitate the instructor and aid students in important areas such as organization, art program, readability, and media. The main goal of this edition is
to further improve areas that will facilitate the instruc- fpr_hc tor and aid students in important areas such as organization, art program, readability, and media.

Animations

The main goal of this edition is to further improve areas that will facilitate the instructor.

1. New title reflecting the content of this text.
2. The chapter on coordination chemistry.

The main goal of this edition is to further improve areas that will facilitate the instructor.

Acknowledgments

The main goal of this edition is to further improve areas that will facilitate the instructor and aid students in important areas such as organization, art program, readability, and media.

William E. Acree University of North Texas
June Bronfenbrenner Anne Arundel Commu fprak_Iu College-Arnold
Adedoyin Adeyiga Bennett College
June Bronfenbrenner Anne Arundel Community College-Arnold
Adedoyin Adeyiga Bennett College
Gul Afshan Milwaukee School of Engineering
Adedoyin Adeyiga Bennett College
Gul Afshan Milwaukee School of Engineering
Adedoyin Adeyiga Bennett College
June Bronfenbrenner Anne Arundel Community College-Arnold
Adedoyin Adeyiga Bennett College
Gul Afshan Milwaukee School of Engineering
Adedoyin Adeyiga Bennett College
Gul Afshan Milwaukee School of Engineering
Adedoyin Adeyiga Bennett College
June Bronfenbrenner Anne Arundel Community College-Arnold
Adedoyin Adeyiga Bennett College
Gul Afshan Milwaukee School of Engineering
Gul Afshan Milwaukee School of Engineering

FPO

The main goal of this edition is to further improve areas that will facilitate the instructor.
-Brian Laird

Features

Each chapter opening section contains a vibrant photograph to introduce the chapter as well as a clear, concise chapter outline. Then, to spark the student's interest, the chapter text begins on the actual opening page.

The main goal of this edition is to further improve areas that will facilitate the instructor and aid students in important areas such as organization, art program, readability, and media. The main goal of this edition is to further improve areas that will facilitate.

1. New title reflecting the content of this text is for a one-year introductory chemistry
course.
2. The chapter on coordination chemistry has been moved to near the end of the book.
3. The chapter on coordination chemistry has been moved to near the end of the book.

Pedagogy

Each chapter opening section contains a vibrant photograph to introduce the chapter as well as a clear, concise chapter outline. Then, to spark the student's interest, the chapter text begins on the actual opening page.

FPO

To the Student

This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section.

This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section.

This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section.

How to Succeed in Chemistry Class

We define the main goal of this edition is to further improve areas that will facilitate the instructor and aid students in important areas such as organization, art program, readability, and media.
» The chapter on coordination chemistry has been moved to near the end of the book.
" The main goal of this edition is to further improve areas that will faciliate the student to learn better.
" The chapter on coordination chemistry.
The main goal of this edition is to further improve areas that will facilitate the instructor and aid students in important areas such as organization, art program, readability, and media.

Commitment of Time and Perseverance

1. New title reflecting the content of this text is for a one-year introductory chemistry course.
2. The chapter on coordination chemistry has been moved to near the end of the book.
3. The chapter on coordination chemistry has been moved to near the end of the book.

The main goal of this edition is to further improve areas that will facilitate the instructor and aid students in important areas such as organization, art program, readability, and fitshetra.

Animations

The main goal of this edition is to further improve areas that will facilitate the instructor.

1. New title reflecting the content of this text.
2. The chapter on coordination chemistry.

The main goal of this edition is to further improve areas that will facilitate the instructor.

Getting Organized

The main goal of this edition is to further improve areas that will facilitate the instructor and aid students in important areas such as organization, art program, readability, and media.

This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section.

This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section.

This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section.

List of Selected Applications

ffm_ha
 Biology/Life Science

Energy transformation in a jumping flea, Section 6.7, p. 205
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting,
Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333
Energy transformation in a jumping flea, Section 6.7, p. 205
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting, Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting, Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting, Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333

Chemistry

Energy transformation in a jumping flea, Section 6.7, p. 205
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting, Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333
Energy transformation in a jumping flea, Section 6.7, p. 205
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting, Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting, Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333

Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting,
Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333

Geology/Earth Science

Energy transformation in a jumping flea, Section 6.7, p. 205
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting,
Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333
Energy transformation in a jumping flea, Section 6.7, p. 205
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting, Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting,
Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting,
Section 8.5, p. 278
Energy transformation in a jumping flea, Section 6.7, p. 205
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting,
Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333
Energy transformation in a jumping flea, Section 6.7, p. 205
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting,
Section 8.5, p. 278
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting,
Section 8.5, p. 278

Chapter

The Basic Language of ©hemistry

Chapter Overview

bchop_tgct

Chemistry is an active, evolving science that has vital importance to our world, in both the realm of nature and the realm of society. Its roots are ancient, but as we will soon see, chemistry is every bit a modern science. We will begin our study of chemistry at the macroscopic level, where we can see and measure the materials of which our world is made. In this chapter we will discuss the scientific method, which provides the framework for research not only in chemistry but in all other sciences as well. Next we will discover how scientists define and characterize matter. Then we will familiarize ourselves withe the systems of measurement used in the laboratory. Finally, we will spend some time learning how to handle numerical results of chemical measurremeents and solve numerical problems.

Chapter Outline ${ }_{\text {bopto_tx }}$

0.1 Chemistry is the study of matter and change 00
0.2 Matter is made of atoms and molecules 00
0.3 Compounds are represented by chemical formulas 00
0.4 Reactions are described by balanced chemical equations 00
0.5 Quantities of atoms and molecules can be described by mass or number 00
0.6 Stoichiometry is the quantitative study of mass and mole relationships in chemical reactions 00

[^3]
FPO

bch_fgct_
The Chinese characters for chemistry mean "The study of change."

	bch_tbnm		
bch_tbtt)	Table 4.1 Heats of Solution of Some Ionic Compounds		
bch_tben	Compound		$\Delta \mathbf{H}_{\text {soln }}$ (kJ/mol)
	LiCl	-37.1	
bch_tbtx	CaCl_{2}	-82.8	
	NaCl	4.0	
	KCl	17.2	
	$\mathrm{NH}_{4} \mathrm{Cl}$	15.2	

11.2 The Relationsip Between Conjugatae Acid-Base Ionization Constants

We defined chemistry at the beginning of the chapter as the study of matter and the changes it undergoes. Matter is anything that occupies space and has mass. Matter includes things we can see and touch (such as water, earth, and trees), as well as things we cannot (such as air). Thus, everything in the universe has a "chemical" connection we can see and touch.

Summary of Rules for Writing Equilibrium Constant Expressions

A substance is a form of matter that has a definite (constant) composition and distinct properties. Examples are water, ammonia, table sugar (sucrose), gold, and oxygen. Substances differ from one another in composition and can be identified by their appearance, smell, taste, and other properties.Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2.
a. How many electrons are present in a particular atom? How many electrons are present in a particular atom?
b. What energies do individual electrons possess? How many electrons are present in a particular atom?

Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2.

$$
\mathrm{CaCO}_{3}(s)+\mathrm{CaO}(s)=\mathrm{CO}_{2}(g)
$$

Examples are water, ammonia, table sugar (sucrose), gold, and oxygen. Substances differ from one another in composition and bch_lutt identified by their appearance.

> | Method 1 | Method 2 |
| :--- | :--- |
| $3.66+8.45=30.9$ | $3.66+8.45=30.93$ |
| $30.9+2.11=65.2$ | $30.93+2.11=65.3$ |

The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and bchlu-cales, which we will consider in Chapter 2.

$\mathrm{B}_{2} \mathrm{H}_{6}$	diborane
CH_{4}	methane
SiH_{4}	silane
NH_{3}	ammonia

Under certian conditions of pressure and temperature, most substances cn exist in any one of the three states of matter: solid, liquid, or gas. Water, for example, can be solid becheq_a muter, or steam or eater vapor.

$$
\begin{equation*}
\mathrm{CaCO}_{3}(s)+\mathrm{CaO}(s)=\mathrm{CO}_{2}(g) \tag{4.1}
\end{equation*}
$$

The physical properites of a substance often depend on its state. most substances cn exist in any one of the three states of matter: solid, liquid, or gas. Water, for

FPO

Figure 1.3 (a) The output from an automated DNA sequencing machine. Each lane displays the sequence (indicated in different colors) obtained with a separate DNA sample. (b) Photovoltaic cells. (c) A silicon wafer being processed. (d) The leaf on the left was taken from a tobacco plant that was not genetically engineered but was exposed to tobacco hron worms. The leaf on the right was genetically engineered and is barely attached by the worms. The same technique can be applied to protect the leaves of other types of plants.
example, can be solid ice, liquid water, or steam or eater vapor. The physical properites of a substance often depend on its state. Substances differ from one another in composition and can be identified by their appearance, smell, taste, and other properties.
" If a number is greater than 1 , then all the zeros written to the right of the decimal point count as significant figures.
» Potassium Bromide. The patassioum cation K+ and the bromine anion $\mathrm{Br}-$ combine to form the ionic compound potassium bromide.
»Any digit that is not zero is significant. Thus 845 cm has three significant figures, 1.234 kg has four significant figures, and so on.
Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances

1. Elements are composed of extremely small particles called atoms. All atoms of a given element are identical, having the same size, mass, and chemical properties.
2. Compounds are composed of atoms of more than one element. In any compound, the ration of the numbers of atoms of any two of the elements.

Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances

This Is a Third Level Head

Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances, mixtures, elements.
\dagger John Dalton (1766-1844). English chemist, mathmetician, and philosopher. In addition to the atomic theory, he also formulated several gas laws and gave the first detailed description of color blindness. $\dagger \dagger$ John Dalton (1766-1844). English chemist, mathmetician, and philosopher.

Physics Today

A gas is a substance that is normally in the gaseous state at ordinary temperatures and pressures; a vapor is the gaseous form of any substance that is a liquid or a solid at normal temperatures and pressures.
bchnt_tx
bch_fgct

FPO

Figure 1.3 Thomson's model of the atom, sometimes descibed as the "plum-pudding" modle, after a traditional English dessert containing raisins. The electrons are embedded in a uniform, positively charged sphere. © Hary Bliss. Originally published in the New Yorker Magazine.
bch_fgso

1. If a number is greater than 1 , then all the zeros written to the right of the decimal.
2. If a number is greater than 1 , then all the zeros written to the right of the decimal.
Chemists distinguish among several subcategories of matter based on composition and properties. Chemists

Metal from the Sea

Cagnesium is a valuable, lightweight metal used as a structural material as well as in alloys, in batteries, and in chemical synthesis.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{CaO}(\mathrm{~s})=\mathrm{CO}_{2}(\mathrm{~g})
$$

Earth's crust, it is cheaper to "mine" the metal from seawater. The classifications of matter.

Pressure Cookers

Chemists distinguish among several subcategories of matter based on composition and properties.
" If a number is greater than 1 , then all the zeros written to the right of the decimal point.
" Potassium Bromide. The patassioum cation K+ and the bromine anion Br - combine to form the ionic compound potassium bromide.
" Any digit that is not zero is significant. Thus 845 cm has three significant figures, 1.234 kg has four significant figures, and so on.

Chemists distinguish among several subcategories of matter based on composition and properties.

distinguish among several subcategories of matter based on composition and properties.

Unnumbered Table Per Survey	
Component	Melting Point $\left({ }^{\circ} \mathrm{C}\right)$
Bismuth (50%)	271
Cadmium (12.5%)	321
Lead (25%)	328

*Components are shown in percent by mass, and the melting point is that of the pure metal. Use for source or footnote.

Earth's crust, it is cheaper to "mine" the metal from seawater. The classifications of matter include substances, mixtures.

Earth's crust, it is cheaper to "mine" the metal from

D-Head Runs In The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2.

Examples are water, ammonia, table sugar (sucrose), gold, and oxygen. Sub-

Straddle Head Example		
Elements Compounds	Column	
H_{2} (molecular hydrogen)	HF (hydrogen fluoride)	0.5
N_{2} (molecular nitrogen)	HCl (hydrogen chloride)	0.6
O_{2} (molecular oxygen) turnover lines	HBr (hydrogen bromide)	1.2

[^4]stances differ from one another in composition and can be identified by their appearance. Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2. Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2. Chemists distinguish among several subcategories of matter based on composition and properties.

1. Elements are composed of extremely small particles called atoms. All atoms of a given element are identical, having the same size, mass.
2. Compounds are composed of atoms of more than one element. In any compound, the ration of the numbers of atoms of any two of the elements.

The classifications of matter include substances, mixtures, elements, and com-

pounds, as well as atoms and molecules, which we will consider in Chapter 2. Substances differ from one another in composition and can be identified by their appearance, smell, taste, and other properties.

Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances, mixtures,

> bchea_tt

Example 19.1 Calculating Molecular Mass

Calculate the molecular masses of the following compounds:
(a) sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ and (b) caffeine $\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}\right)$.

Strategy To calculate molecular mass, we need to count the number of each type of atom in the molecule and look up its atomic mass in the periodic table.
Solution The number of moles of EG in 651 g EG is:
(a) This is an alpha sublist entry example within an exersice.
(b) This is an alpha sublist entry example within an exersice this is an alpha sublist entry example within an exercise with a runover.

Check Because 6.07 g is smaller than the molar mass, the answer is reasonable.
Comment 6.07 g is smaller than the molar mass, the answer is reasonable. Calculate the boiling point and freezing point of a solution containing 478 g of ethylene glycol in 3202 g of water.

Practice Exercise Calculate the boiling point and freezing point of a solution containing 478 g of ethylene glycol in 3202 g of water. Calculate the boiling point and freezing point of a solution containing 478 g of ethylene glycol in 3202 g of water.

Continued-

Solution The number of moles of EG in 651 g EG is. To calculate molecular mass, we need to count the number of each type of atom in the molecule and look up its atomic mass in the periodic table.
Step 1: We can deduce the skeletal structure of the carbonate ion by recognizing that C is less electronegative than). Therefore, it is most likely to occupy a central position.
Step 2: Skeletal structure of the carbonate ion by recognizing that C is less electronegative than). Therefore, it is most likely to occupy a central position.
Step 3: Structure of the carbonate ion by recognizing that C is less electronegative than). Therefore, it is most likely to occupy a central position.

Practice Exercise Calculate the boiling point and freezing point of a solution containing 478 g of ethylene glycol in 3202 g of water.

Check Calculate the boiling point and freezing point of a solution containing 478 g of ethylene grhealutt 3202 g of water.

bchea_lu	Reactants	Products
	$\mathrm{A} 1(4)$	$\mathrm{A}(4)$
$\mathrm{O}(6)$	$\mathrm{O}(6)$	

(a) This is an alpha sublist entry example within an exersice.
(b) This is an alpha sublist entry example within an exersice this is an alpha sublist entry exampre winim an exersice with a runover.

elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2. Examples are water, ammonia, table sugar (sucrose), gold, and oxygen. Substances differ from one another in composition and can be identified by their appearance. Chemists distinguish among several subcategories of matter

Example 19.2

Calculate the molecular masses of the following compounds:
(a) sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ and (b) caffeine $\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}\right)$.

Strategy To calculate molecular mass, we need to count the number of each type of atom in the molecule and look up its atomic mass in the periodic table.

Solution The number of moles of EG in 651 g EG is:
(a) This is an alpha sublist entry example within an exersice.
(b) This is an alpha sublist entry example within an exersice this is an alpha sublist.

$$
\frac{10.50 \mathrm{~mol}}{\underline{\mathrm{EG}}} 54.19 \text { mole EG/Kg H} \mathrm{H} \mathrm{O} 54.19 \mathrm{~m}
$$

Check Because 6.07 g is smaller than the molar mass, the answer is reasonable.
based on composition and properties. The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2. Examples are water, ammonia, table sugar (sucrose), gold, and oxygen. Substances differ from one another in composition and can be identified by their appearance, smell, taste, and other properties. Examples are water, ammonia, table sugar (sucrose), gold, and oxygen. Substances differ from one another in composition and can be identified by their appearance, smell, taste, and other properties.

11.3 The Structure of the Atom

We defined chemistry at the beginning of the chapter as the study of matter and the changes it undergoes. Matter is anything that occupies space and has mass. Matter includes things we can see and touch (such as water, earth, and trees), as well as things we cannot (such as air).
Step 1: We can deduce the skeletal structure of the carbonate ion by recognizing that C is less electronegative.
Step 2: Skeletal structure of the carbonate ion by recognizing that C is less electronegative than). Therefore, it is most likely to occupy a central position.
Step 3: Structure of the carbonate ion by recognizing that C is less electronegative than). Therefore, it is most likely to occupy a central position. bcesu_tt

Chapter Summary

Section 1.1

» The arsenic in Napoleon's hair was detected using a technique called neutron activation. When arsenic75 is bonbarded with high energy neutrons, it is converted to the radioactive As-76 isotope. The energyof the rays emitted by the radioactive isotoped is characterstic of arsenic and the intensity of the rays establishes how much arsenic is present in a sample.
» The arsenic in Napoleon's hair was detected using a technique called neutron activation.

Section 1.2

» The arsenic in Napoleon's hair was detected using a technique called neutron activation. When arsenic75 is bonbarded with high energy neutrons.

bcekt_tt

Key Words

Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206

Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process dother process, p. 208
Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208

Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207

Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206

bcepq_tt
 Questions and Problems

bcepq_
 bcepq
 The Nature of Energy and Types of Energy
 Review Questions

5.1 The arsenic in Napoleon's hair was detected using a technique called neutron activation. When arsenic-75 is bonbarded with high energy neutrons, it is converted to the radioactive As-76 isotope.

FPO

5.2 The arsenic in Napoleon's hair was detected using a technique called neutron activation. When arsenic-75 is bonbarded with high energy neutrons.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{CaO}(\mathrm{~s})=\mathrm{CO}_{2}(\mathrm{~g})
$$

5.3 The arsenic in Napoleon's hair was detected using a technique called neutron activation.
5.4 The arsenic in Napoleon's hair was detected using a technique called neutron activation.
5.5 The arsenic in Napoleon's hair was detected using a technig $\ddot{\square} \quad \ddot{\circ}$ atron activation. $\begin{array}{lc}\text { When arsenic-75 } \\ \text { neutrons. } & \ddot{O}=\ddot{C}=\ddot{O}=\ddot{O}=\ddot{O} \\ \text { with high energy }\end{array}$ neutrons.

O $\triangle C \boxtimes O \boxtimes O$

bcepq_tt_a

Special Problems

O
5.123 The arsenic in Napoleon's hair was detected using a technique called neu bcepq_In_a ion.
(a) Does a single molecule have a temperature?
(c) Comment on the validity of the previous statements.
15.124 The arsenic in Napoleon's hair was detected using a technique called neutron activation. When
5.6 The arsenic in Napoleon's hair was detected using a technique called neutron activation.

Problems

5.7 When arsenic-75 is bonbarded with high energy neutrons, it is converted to the radioactive.

Unnumbered Table Per Survey

Component	Melting Point (${ }^{\circ} \mathrm{C}$)	bcepq_tben
Bismuth (50\%)	271	bcepq_tbtx
Cadmium (12.5\%)	321	
Lead (25\%)	328	

*Components are shown in percent by mass, and the melting point is that of the pure metal. Use for source or footnote.
5.121 When arsenic-75 is bonbarded with high energy neutrons, it is converted to the radioactive.

Unnumbered List entry	List entry
List entry	Unnumbered List
entry	

5.122 The arsenic in Napoleon's hair was detected.
(a) As-76 isotope. When arsenic-75 is bonbarded with high energy neutrons.
(b) As-76 isotope.
5.123 The arsenic in Napoleon's hair was detected.
arsenic- 75 is bonbarded with high energy neutrons, it is converted to the radioactive As-76 isotope. When arsenic-75 is bonbarded with high energy neutrons, it is converted to the radioactive A s-7 6 is otope. As-76 isotope. When arsenic-75 is bonbarded with high energy neutrons, it is converted to the radioactive As-76 isotope.

Answers to Practice Exercises

3.1 10.81 amu 3.2 3.59 moles. 3.3 $2.57 \mathrm{X} 10^{3} \mathrm{~g}$. 3.48 .49 X $10^{21} \mathrm{~K}$ atoms. 3.532 .04 amu . 3.61 .66 moles. 3.7 5.81 X $10^{24} \mathrm{H}$ atoms. $3.8 \mathrm{H}: 2.055 \%$; S: 32.69%; O: $\quad 65.25 \%$. $\quad 3.9 \quad \mathrm{KMnO}_{4} \quad$ (potassium permanganate). $\mathbf{3 . 1 0} 196$ g. 3.11 $\mathrm{B}_{2} \mathrm{H}_{6} .3 .12 \mathrm{Fe}_{2} \mathrm{O}_{3}$
$+3 \mathrm{CO} 2 \mathrm{Fe}+3 \mathrm{CO}_{2} \mathbf{3 . 1 3} 235 \mathrm{~g} .3 .140 .769 \mathrm{~g} .3 .15$
(a) 234 g , (b) 234 g .3 .16 (a) 863 g , (b) $93.0 \% .3 .17$

H: 2.055%; S: 32.69%; O: 65.25%. $3.18 \mathrm{KMnO}_{4}$

$3.21 \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} 2 \mathrm{Fe}+3 \mathrm{CO}_{2} 3.22235 \mathrm{~g} .3 .23$

Appendix 1

eap_tt

Derivation of the Names of Elements*

Elements	Symbol	Atomic No.	Atomic Mass	Date of Discovery	Discoverer and Nationality	Derivation
Actinium	Ac	89	227	1899	A. Debierne (Fr.)	Gr. aktis, beam or ray
Aluminum	Al	13	26.98	1827	F. Woehler (Ge.) compound in which it was discovered; derived from L. alumen, astringent taste	Alum, the aluminum
Americium	Am	95	(243)	1944	A. Ghiorso (USA) R.A. James (USA) G.T. Seaborg (USA) S.G. Thompson (USA)	The Americas
Antimony	Sb	51	121.8	Ancient		L. antimonium (anti, opposite of; monium, isolated condition), so named because it is a substance which combines readily; symbol L. stibium, mark
Actinium	Ac	89	227	1899	A. Debierne (Fr.)	Gr. aktis, beam or ray
Aluminum	Al	13	26.98	1827	F. Woehler (Ge.)	Alum, the aluminum compound in which it was discovered; derived from L .
alumen,						astringent taste
Americium	Am	95	(243)	1944	A. Ghiorso (USA) R.A. James (USA) G.T. Seaborg (USA) S.G. Thompson (USA)	The Americas
Antimony	Sb	51	121.8	Ancient		L. antimonium (anti, opposite of; monium, isolated condition), so named because it is a tangible (metallic) substance which combines readily; ymbol L. stibium, mark
Actinium	Ac	89	227	1899	A. Debierne (Fr.)	Gr. aktis, beam or ray
Aluminum	Al	13	26.98	1827	F. Woehler (Ge.)	Alum, the aluminum compound in which it was discovered

[^5]
Appendix 2
 Unit for the Gas Constant

In this appendix we will see how the gas constant R can be expressed in units $\mathrm{J} / \mathrm{K} \mathrm{mol}$. Our first step is to derive a realtionship between atm and pascal. We start with:

$$
\begin{aligned}
& \log 6.7 \times 10^{24}=23.17 \\
& \log 6.7 \times 10^{24}=23.17
\end{aligned}
$$

In each case, the logarithm of the numcer can be obtained by inspection. The common, or base-10, logarithm of any number is the power to which 10 must be raised to equal the number. The following are examples that illustrate this realtionship.

Logarithms

The common, or base-10, logarithm of any number is the power to which 10 must be raised to equal the number. The following are examples that illustrate this realtionship. The common, or base-10, logarithm of any number is the power to which 10 must be raised to equal the number. The following are examples that illustrate this realtionship.

Logarithms

Common Logorithms

The concept of the logarithms is an extension of the concept of exponents, which is discussed in Chapter 1. The common, or base-10, logarithm of any number is the power to which 10 must be raised to equal the number. The following are examples that illustrate this realtionship.

Logarithm	Exponent
$\log 1=0$	$10^{0}=1$
$\log 10=1$	$10^{1}=10$
$\log 100=2$	$10^{2}=100$

In each case, the logarithm of the numcer can be obtained by inspection. The common, or base-10, logarithm of any number is the power to which 10 must be raised to equal the number. The following are examples that illustrate this realtionship. The common, or base-10, logarithm of any number is the power to which 10 must be raised to equal the number. The following are examples that illustrate this realtionship. The common, or base-10, logarithm of any number is the power to which 10 must be raised to equal the number.

Inorganic Substances				
Substance	$(\mathrm{kJ} / \mathrm{mol})$	$(\mathrm{kJ} / \mathrm{mol})$	$(\mathrm{J} / \mathrm{K} . \mathrm{mol})$	Cp
$\mathrm{Ag}(\mathrm{s})$	0	0	42.7	42.7
$\mathrm{Ag}^{1}(\mathrm{aq})$	105.9	77.1	73.9	73.9
$\mathrm{AgCl}(\mathrm{s})$	2127.0	2109.7	96.1	96.1
$\mathrm{Ag}(\mathrm{s})$	0	0	42.7	42.7
$\mathrm{Ag}^{1}(\mathrm{aq})$	105.9	77.1	73.9	73.9

The number in parentheses is the number of the section in which the term first appears.

A

absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature zero of. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)

B

bsolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
bccuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
bsolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
bccuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
bsolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature that uses the absolute zero of temperature as the lowest temperature. (5.3)
bccuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
bsolute temperature scale. A temperature scale that uses the absolute.

ANSWERS

Chapter 1

1.4 (a) Hypothesis. (b) [Xe]6s24f145d5 1.12 (a) Physical change. (b) $8.49+10 \mathrm{~K}$ atoms. (c) Physical change. (d) Chemical change (e) Physical change. 1.14 (a) K. (b) Sn. (c) Cr. (d) B.
1.4 (a) Zn (s) 1 Cu 21 (aq) Zn 21 (aq) $1 \mathrm{Cu}(\mathrm{s}) \mathbf{1 . 1 2}$ (a) Physical.
(b) Chemical change. (c) Physical change. (d) $8.49+10 \mathrm{~K}$ atoms (e) Physical change. 1.14 (a) K. (b) Cu 21 (aq) Zn 21 (aq) $1 \mathrm{Cu}(\mathrm{s})$. 1.4 (a) Hypothesis. (b) [Xe]6s24f145d5 1.12 (a) Physical change. (b) $8.49+10 \mathrm{~K}$ atoms. (c) Physical change. (d) Chemical change. (e) Physical change. 1.14 (a) K. (b) Sn. (c) Cr. (d) B. 1.4 (a) Hypothesis. (b) [Xe]6s24f145d5 1.12 (a) Physical change. (b) $\mathrm{Zn}(\mathrm{s}) 1 \mathrm{Cu} 21(\mathrm{aq}) \mathrm{Zn} 21(\mathrm{aq}) 1 \mathrm{Cu}(\mathrm{s})$. (d) $8.49+10 \mathrm{~K}$ atoms (e) Physical change. 1.14 (a) K. (b) Sn. (c) Cr. (d) B. 1.4 (a) Hypothesis. (b) Law. (c) Theory 1.12 (a) Physical change. (b) $8.49+10 \mathrm{~K}$ atoms. (c) Physical change. (d) Chemical change (e) Physical change. 1.14 (a) K. (b) Sn. (c) Cr. (d) B.
1.4 (a) Hypothesis. (b) [Xe]6s24f145d5 1.12 (a) Physical change. (b) Chemical change. (c) [Xe]6s24f145d5 (e) Physical change. 1.14 (a) K. (b) Sn. (c) Cr. (d) B. (e) Cr. (f) B (g) Cr. (h) B 1.4 (a) Hypothesis. (b) Law. (c) Theory 1.12 (a) Physical change. (b) Chemical change. (c) Physical change. (d) Chemical change (e) Physical change. 1.14 (a) K. (b) Sn. (c) Cr. (d) B.

Chapter 2

2.4 (a) Hypothesis. (b) Law. (c) Theory 2.12 (a) Physical change. (b) Chemical change. (c) Physical change. (d) Chemical change (e) Physical change. 2.14 (a) $\mathrm{Zn}(s) 1 \mathrm{Cu}^{21}(a q)$ $\mathrm{Zn}^{21}(a q) 1 \mathrm{Cu}(s) 2.4$ (a) Hypothesis. (b) Law. (c) Theory 2.12 (a) Physical change. (b) Chemical change. (c) Physical change.
(d) Chemical change (e) Physical change. 2.14 (a) K. (b) Sn.
(c) Cr. (d) B. 2.4 (a) Hypothesis. (b) Law. (c) Theory 2.12 (a) Physical change. (b) $\mathrm{Zn}(s) 1 \mathrm{Cu}^{21}(a q) \mathrm{Zn}^{21}(a q) 1 \mathrm{Cu}(s)$. (d) Chemical change (e) Physical change. 2.14 (a) K. (b) $[\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{5}$
2.4 (a) Hypothesis. (b) Law. (c) Theory 2.12 (a) Physical change. (b) Chemical change. (c) $[\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{5}$ (d) Chemical change (e) Physical change. 2.14 (a) K. (b) Sn. (c) Cr. (d) B. 2.4 (a) Hypothesis. (b) Law. (c) Theory 2.12 (a) Physical change. (b) $8.49+10 \mathrm{~K}$ atoms. (c) $\mathrm{Zn}(s) 1 \mathrm{Cu}^{21}(a q) \mathrm{Zn}^{21}(a q) 1$ $\mathrm{Cu}(s)$ (e) Physical change. 2.14 (a) K. (b) Sn. (c) Cr. (d) B. 2.4 (a) Hypothesis. (b) Law. (c) Theory 2.12 (a) Physical change. (b) Chemical change. (c) Physical change. (d) $8.49+$ 10K atoms. (e) Physical change. 2.14 (a) K. (b) Sn. (c) Cr. (d) B. 2.4 (a) Hypothesis. (b) Law. (c) Theory 2.12 (a) Physical change. (b) $8.49+10 \mathrm{~K}$ atoms. (c) $[\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{5}$ (d) Physical change. 2.14 (a) K. (b) Sn . (c) Cr. (d) B. 2.4 (a) $\mathrm{Zn}(s) 1$ $\mathrm{Cu}^{21}(a q) \mathrm{Zn}^{21}(a q) 1 \mathrm{Cu}(s) 2.12$ (a) Physical. (b) Chemical change. (c) Physical change. (d) $8.49+10 \mathrm{~K}$ atoms. (e) Physical change. 2.14 (a) K. (b) Sn. (c) Cr. (d) B. 2.14 (a) K. (b) Sn.
(c) Cr. (d) B. 2.4 (a) Hypothesis. (b) Law. (c) Theory 2.12 (a) Physical change. (b) Chemical change. (c) Physical change.
(d) Chemical change (e) Physical change. 2.14 (a) K. (b) Sn.
(c) Cr. (d) B. 2.4 (a) Hypothesis. (b) Law. (c) Theory
2.12 (a) Physical change. (b) Chemical change. (c) Physical change. (d) Chemical change (e) Physical change. 2.14 (a) $\mathrm{Zn}(s) 1 \mathrm{Cu}^{21}(a q) \mathrm{Zn}^{21}(a q) 1 \mathrm{Cu}(s)$ (b) Sn . (c) Cr. (d) B. 2.4 (a) Hypothesis. (b) Law. (c) Theory 2.12 (a) Physical change. (b) $8.49+10 \mathrm{~K}$ atoms. (c) Physical change. (d) Chemical change (e) Physical change. 2.14 (a) K. (b) Sn. (c) Cr. (d) B.
2.4 (a) Hypothesis. (b) Law. (c) Theory 2.12 (a) Physical change. (b) Chemical change. (c) Physical change. (d) $8.49+$ 10 K atoms. (e) Physical change. 2.14 (a) $\mathrm{Zn}(s) 1 \mathrm{Cu}^{21}(a q)$ $\mathrm{Zn}^{21}(a q) 1 \mathrm{Cu}(s)$.

Chapter 3

3.4 (a) Hypothesis. (b) $[\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{5} 3.12$ (a) Physical change. (b) $8.49+10 \mathrm{~K}$ atoms. (c) Physical change. (d) Chemical change (e) Physical change. $\mathbf{3 . 1 4}$ (a) K. (b) Sn. (c) Cr. (d) B.
3.4 (a) $\mathrm{Zn}(s) 1 \mathrm{Cu}^{21}(a q) \mathrm{Zn}^{21}(a q) 1 \mathrm{Cu}(s) 3.12$ (a) Physical.
(b) Chemical change. (c) Physical change. (d) Chemical
change (e) Physical change. 3.14 (a) $\mathrm{Zn}(s) 1 \mathrm{Cu}^{21}(a q) \mathrm{Zn}^{21}(a q)$ $1 \mathrm{Cu}(s) .3 .4$ (a) Hypothesis. (b) Law. (c) Theory 3.12 (a) Physical change. (b) Chemical change. (c) Physical change.
(d) $8.49+10 \mathrm{~K}$ atoms. (e) Physical change. 3.14 (a) K. (b) Sn.
(c) Cr .
(d) B. 3.4 (a) Hypothesis. (b) $[\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{5} 3.12$ (a) Physical change. (b) $8.49+10 \mathrm{~K}$ atoms. (c) Physical change.
(d) Chemical change (e) Physical change. 3.123 .4
(a) Hypothesis. (b) Law. (c) Theory 3.12 (a) Physical change.
(b) Chemical change. (c) Physical change. (d) Chemical change (e) Physical change. 3.14 (a) K. (b) Sn. (c) Cr. (d) B. 3.4 (a) Hypothesis. (b) Sn. (c) Cr. (d) B (b) Sn. (c) Cr. (d) B (b) Law. (c) Theory 3.12 (a) Physical change. (b) Chemical change. (c) $[\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{5}$ (e) Physical change. 3.14 (a) K. (b) Sn. (c) Cr. (d) B. 3.4 (a) Hypothesis. (b) Law. (c) Theory 3.12 (a) Physical change. (b) Chemical change. (c) $\mathrm{Zn}(s) 1$ $\mathrm{Cu}^{21}(a q) \mathrm{Zn}^{21}(a q) 1 \mathrm{Cu}(s)$ (e) Physical change.
3.13 (a) $\mathrm{Zn}(s) 1 \mathrm{Cu}^{21}(a q) \mathrm{Zn}^{21}(a q) 1 \mathrm{Cu}(s)$.
(c) Physical change. (d) Chemical change (e) Physical change.
3.14 (a) K. (b) Sn. (c) Cr. (d) B. 3.4 (a) Hypothesis. (b) Law.
(c) Theory 3.12 (a) $\mathrm{Zn}(s) 1 \mathrm{Cu}^{21}(a q) \mathrm{Zn}^{21}(a q) 1 \mathrm{Cu}(s)$.
(c) Physical change. (d) Chemical change (e) Physical change. 3.15 (a) K. (b) Sn. (c) Cr. (d) B. 3.4 (a) Hypothesis. (b) Law.
(c) Theory 3.12 (a) Physical change. (b) Chemical change.
(c) Physical change. (d) Chemical change (e) Physical change. 3.12 (a) Physical change. (b) Chemical change. (c) $\mathrm{Zn}(s) 1$ $\mathrm{Cu}^{21}(a q) \mathrm{Zn}^{21}(a q) 1 \mathrm{Cu}(s)$ (e) Physical change.
3.13 (a) $\mathrm{Zn}(s) 1 \mathrm{Cu}^{21}(a q) \mathrm{Zn}^{21}(a q) 1 \mathrm{Cu}(s)$.
(c) Physical change. (d) Chemical change (e) Physical change. 3.14 (a) K. (b) Sn. (c) Cr. (d) B. 3.4 (a) Hypothesis. (b) Law. (c) Theory 3.12 (a) $\mathrm{Zn}(s) 1 \mathrm{Cu}^{21}(a q) \mathrm{Zn}^{21}(a q) 1 \mathrm{Cu}(s)$.
(c) Physical change. (d) Chemical change (e) Physical change. 3.15 (a) K. (b) Sn. (c) Cr. (d) B. 3.4 (a) Hypothesis. (b) Law.

Chapter 1

Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v:
© Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography

Chapter 2

Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/ TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v:
© Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/ TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v:
© Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography

Chapter 3

Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v:
© Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/ TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v:
© Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/ TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v:
© Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography.

Chapter 4

Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v:
© Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/ TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v:
© Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Photography. Page iv: © Fritz Goro/

TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv:
© Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/ Time Life Syndication. Page v: © Ken Karp

Chapter 5

Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v:
© Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/ TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v:
© Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/ TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v:
© Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp

Chapter 6

Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp
Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v:
© Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/ TimePix/Time Life Syndication. Page v: ©
ein tt

A

Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612, 664, 965
ionization constant of, 612

titrations of, 664

Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612, 664, 965
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612, 664, 965
ionization constant of, 612 titrations of, 664
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$

Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
ionization constant of, 612
titrations of, 664
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612, 664, 965
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
ionization constant of, 612
titrations of, 664
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17,

163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
ionization constant of, 612
titrations of, 664
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
ionization constant of, 612
titrations of, 664
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163

Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
ionization constant of, 612
titrations of, 664
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612

B

Bbsoloute Zero, 163
Bcetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612, 664, 965
ionization constant of, 612
titrations of, 664
Bbsolute antropy, 736, 742
Bbsolute temperature scale, 17, 163
Bbsoloute Zero, 163
Beetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Bbsolute antropy, 736, 742
Bbsolute temperature scale, 17 , 163
Bbsoloute Zero, 163
Bcetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Bbsolute antropy, 736, 742
Bbsolute temperature scale, 17, 163

Chapter

Chemical Bonding in Polyatomic Molecule Molecular Geometry and Interaction

Chapter Outline
4.1 Chemistry is the study of matter and change 00
4.2 Matter is made of atoms and molecules 00
4.3 Compounds are represented by chemical formulas 00
4.4 Reactions are described by balanced chemical equations 00
4.5 Quantities of atoms and molecules can be described by mass or number 00
4.6 Stoichiometry is the quantitative study of mass and mole relationships in chemical reactions 00

Box: Major Experimental Technique: Mass
Spectrometry 00

Chapter Overview

Chemistry is an active, evolving science that has vital importance to our world, in both the realm of nature and the realm of society. Its roots are ancient, but as we will soon see, chemistry is every bit a modern science. We will begin our study of chemistry at the macroscopic level, where we can see and measure the materials of which our world is made. In this chapter we will discuss the scientific method, which provides the framework for research not only in chemistry but in all other sciences as well. Next we will discover how scientists define and characterize matter. Then we will familiarize ourselves withe the systems of measurement used in the laboratory. Finally, we will spend some time learning how to handle numerical results of chemical measurremeents and solve numerical problems.

Metaly from the Sea

Cagnesium is a valuable, lightweight metal used as a structural material as well as in alloys, in batteries, and in chemical synthesis.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{CaO}(\mathrm{~s})=\mathrm{CO}_{2}(\mathrm{~g})
$$

Earth's crust, it is cheaper to "mine" the metal from seawater. The classifications of matter.

Pressure Cookers

Chemists distinguish among several subcategories of matter based on composition and properties.
" If a number is greater than 1 , then all the zeros written to the right of the decimal point.
" Potassium Bromide. The patassioum cation K+ and the bromine anion Br - combine to form the ionic compound potassium bromide.
" Any digit that is not zero is significant. Thus 845 cm has three significant figures, 1.234 kg has four significant figures, and so on.
Chemists distinguish among several subcategories of matter based on composition and properties.

1. If a number is greater than 1 , then all the zeros written to the right of the decimal.
2. If a number is greater than 1 , then all the zeros written to the right of the decimal.
Chemists distinguish among several subcategories of matter based on composition and properties. Chemists

FPO

Figure 1.3 Separating iron filings from a heterogeneous mixture. The same technique is used on a larger scale to separate iron and steel from nonmagnetic objects such as aluminum, glass, and plastics.
distinguish among several subcategories of matter based on composition and properties.
Unnumbered Table Per Survey

Component	Melting Point (${ }^{\circ} \mathrm{C}$)
Bismuth (50%)	271
Cadmium (12.5%)	321
Lead (25%)	328

*Components are shown in percent by mass, and the melting point is that of the pure metal. Use for source or footnote.

Earth's crust, it is cheaper to "mine" the metal from seawater. The classifications of matter include substances, mixtures.

Earth's crust, it is cheaper to "mine" the metal from

Cagnesium is a valuable, lightweight metal used as a structural material as well as in alloys, in batteries, and in chemical synthesis.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{CaO}(\mathrm{~s})=\mathrm{CO}_{2}(\mathrm{~g})
$$

Earth's crust, it is cheaper to "mine" the metal from seawater. The classifications of matter. Cagnesium is a valuable, lightweight metal used as a structural material as well as in alloys, in batteries, and in chemical synthesis.

Pressure Cookers

Chemists distinguish among several subcategories of matter based on composition and properties. Cagnesium is a valuable, lightweight metal used as a structural material as well as in alloys, in batteries, and in chemical synthesis.
" If a number is greater than 1 , then all the zeros written to the right of the decimal point. If a number is greater than 1 , then all the zeros written to the right of the decimal point. If a number is greater than 1 , then all the zeros written to the right of the decimal point.
» Potassium Bromide. The patassioum cation K+ and the bromine anion Br - combine to form the ionic compound potassium bromide.
" Any digit that is not zero is significant. Thus 845 cm has three significant figures, 1.234 kg has four significant figures, and so on.
Chemists distinguish among several subcategories of
matter based on composition properties. Chemists distinguish among several subcategories of matter based on composition and properties. Cagnesium is a valuable, lightweight metal used as a structural material as well as in alloys, in batteries, and in chemical synthesis.

1. If a number is greater than 1 , then all the zeros written to the right of the decimal. If a number is greater than 1 , then all the zeros written to the right of the decimal.
2. If a number is greater than 1 , then all the zeros written to the right of the decimal.
3. If a number is greater than 1 , then all the zeros written to the right of the decimal. If a number is greater than 1 , then all the zeros written to the right of the decimal.
Chemists distinguish among several subcategories of matter based on composition and properties. Cagnesium is a valuable, lightweight metal used as a structural material as well as in alloys, in batteries, and in chemical synthesis. Chemists distinguish among several subcategories of matter based on composition and properties. Cagnesium is a valuable, lightweight metal used as a structural material as well as in alloys, in batteries, and in chemical synthesis. Chemists distinguish among several subcategories of matter based on composition and properties. Cagnesium is a valuable, lightweight metal used as a structural mate-

Study Hint

If you have a clear idea of what you want to accomplish before you begin to read a chapter. your reading will be more effective. The questions in this chapter outlineas well as those in the subheadings of each section-can serve as a checklist for mea bchfa_tx progress as your read. A clear picture of what questions are going to be addressed and where the answers will be found forms a mental road map to guide you through the chapter. Take a few minutes to study the outline and fix this road map in your mind. It will be time well spent.

11.2 The Relationsip Between Conjugatae Acid-Base Ionization Constants

We defined chemistry at the beginning of the chapter as the study of matter and the changes it undergoes. Matter is anything that occupies space and has mass. Matter includes things we can see and touch (such as water, earth, and trees), as well as things we cannot (such as air). Thus, everything in the universe has a "chemical" connection we can see and touch.

Summary of Rules for Writing Equilibrium Constant Expressions

A substance is a form of matter that has a definite (constant) composition and distinct properties. Examples are water, ammonia, table sugar (sucrose), gold, and oxygen. Substances differ from one another in composition and can be identified by their appearance, smell, taste, and other properties.Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2.

Mass is a measure of an object's inertia, the property that causes it to resist a change in its motion.

Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2.

Aristole's ideas on motion, although not capable of making quantitative pre- dictions, provided explanations that were widely accepted for many centuries and that fit well with some of our own commonsense thinking.

Examples are water, ammonia, table sugar (sucrose), gold, and oxygen. Substances differ from one another in composition and can be identified by their appearance.

Method 1

$$
\begin{array}{ll}
3.66+8.45=30.9 & 3.66+8.45=30.93 \\
30.9+2.11=65.2 & 30.93+2.11=65.3
\end{array}
$$

The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2.

$\mathrm{B}_{2} \mathrm{H}_{6}$	diborane
CH_{4}	methane
SiH_{4}	silane
NH_{3}	ammonia

Under certian conditions of pressure and temperature, most substances en exist in any one of the three states of matter: solid, liquid, or gas. Water, for example, can be solid ice, liquid water, or steam or eater vapor.

$$
\begin{equation*}
\mathrm{CaCO}_{3}(s)+\mathrm{CaO}(s)=\mathrm{CO}_{2}(g) \tag{4.1}
\end{equation*}
$$

The physical properites of a substance often depend on its state. most substances

Further Readings

Espenson, J.H.: Chemical Kinetics and Reaction Mechanisms, 2d ed., McGraw-Hill, 1995
Eyring, H., D. Henderson, and W. Jost (eds.): Physical Chemistry: And Advanced Treatise, Academic, 1967-1975
Frost, W.: Theory of Unimolecular Reactions, Academic, 1973.

Franks, F. (ed.); Water: A Comprehensive Treatise, vols. 1-7, Plenum, 1972-1982.
Friebolin, H.: Basic One- and Two-Dimensional NMR Spectroscopy, 3d ed., Wiley, 1998

Espenson, J.H.: Chemical Kinetics and Reaction Mechanisms, 2d ed., McGraw-Hill, 1995
Eyring, H., D. Henderson, and W. Jost (eds.): Physical Chemistry: And Advanced Treatise, Academic, 19671975.

Frost, W.: Theory of Unimolecular Reactions, Academic, 1973.

Franks, F. (ed.); Water: A Comprehensive Treatise, vols. 1-7, Plenum, 1972-1982.
Friebolin, H.: Basic One- and Two-Dimensional NMR

ftp_au Brian Laird

fttpaf University of Kansas
ftp_tx With significant contributions by
Rtpena Raymond Chang
ttp_af_a Williams College

Cover Image

About the Cover This is filler copy for placement only that will describe the cover image and it's significance to chemistry. This is filler copy for placement only that will describe the cover image and it's significance to chemistry. This is filler copy for placement only that will describe the cover image and it's significance to chemistry. This is filler copy for placement only that will describe the cover image and it's significance to chemistry.

fcp_tx
 TO DEB, MORGAN, AVA, AND BRYNNA WITH ALL MY LOVE
 - David -

About the Author

Brian Laird was born in Hong Kong and grew up in Shanghai and Hong Kong, China. He received his B.Sc. degree in chemistry from London University, England, and his Ph.D. in chemistry from Yale University. After doing post doctoral research at Washington University and teaching for a year at Hunter College of the City University of New York, he joined the chemistry department at Williams College, where he has taught since 1968. Professor Laird has written books on physical chemistry, industrial chemistry, and physical science. He has also coauthored books on the Chinese Language, children's picture books, and a novel for juvenile readers. He received his B.Sc. degree in chemistry from London University, England, and his Ph.D. in chemistry from Yale University. After doing post doctoral research at Washington University and teaching for a year at Hunter College of the City University of New York, he joined the chemistry department at Williams College, where he has taught since 1968. Professor Laird has written books on physical chemistry, industrial chemistry, and physical science. He has also coauthored books on the Chinese Language, children's picture books, and a novel for juvenile readers.

Brief Contents

fbt_tx 0 The Basic Language of Chemistry 0
1 Quantum Theory and the Electronic Structure of Atoms 00
2 Many-electron Atoms and the Periodic Table 00
3 The Chemical Bond 000
4 Chemical Bonding in Polyatomic Molecules: Molecular Geometry and Interaction 000
5 States of Matter: Gases, Liquids, and Solids 000
6 Thermochemistry: Energy in Chemical Reactions 000
7 Entropy, Free Energy and the Second Law of Thermodynamics 000
8 Physical Equilibrium 000
9 Chemical Equilibrium 000
10 Acids and Bases 000
11 Solution Equilibria 000
12 Electrochemistry 000
13 Chemical Reaction Kinetics 000
14 Atmospheric Chemistry 000
15 Chemistry of Metals 000
16 Organic Chemistry 000
17 Synthetic and Natural Organic Polymers 000
18 Nuclear Chemistry 000
Appendix 1 Mathematical Background A-00
Appendix 1 Thermodynamic Data at 1 bar and $25^{\circ} \mathrm{C}$ A-00
Appendix 1 Thermodynamic Data at 1 atm and $25^{\circ} \mathrm{C}$ A-00
Appendix 1 Title for Appendix Here A-00

0 Preface

0 The Basic Language of Chemistry 0
0.1 Chemistry is the Study of Matter and Change 00Summary of Rules for Writing Constant Expressions 00fto_tx.ha
0.2 Matter is Made of Atoms and Molecules 0 00
Summary of Rules for Writing Constant Expressions 00
0.3 Compounds are Represented by Chemical Formulas 00
0.4 Reactions are Described as Balanced Chemical Equations 00
0.5 Quantities of Atoms and Molecules can be Described by Massor Number 00
0.6 Stoichiometry is the Quantitative Study of Mass and Mole Relationships in Chemical Reactions 00
Box: Major Experimental Technique: Mass Spectometry 00
Chapter Summary
Key Words
Questions and Problems
Special Problems
1 Quantum Theory and the Electronic Structure of Atoms 00
1.1 Classical Physics Does Not Adequately Describe the Interaction of Light with Matter 00
Summary of Rules for Writing Constant Expressions 00
Summary of Rules for Writing Constant Expressions 00
1.2 The Bohr Model Was an Early Attempt at a Quantum Theory of Atoms 00
1.3 Matter has Wavelike Properties Described by the Schrodinger Equation 00
1.4 The Hydrogen Atom is an Exactly Solvable Quantum- Mechanical System 00
Box: Major Experimental Technique: Electron Microscopy 00 00
2 Many-Electron Atoms and the Periodic Table 00
2.1 The Wavefunctions of Many-Electron Atoms can be Described to a Good Approximation Using Atomic Orbitals 00 Summary of Rules for Writing Constant Expressions 00
2.2 Electron Configurations of Many-Electron Atoms are Constructed using the Aufbau (or "Building Up") Principle 00
2.3 The Periodic Table Has a History that Predates Quantum Mechanics 00
16.3 The structure and Properties of Organic Compounds are Greatly Influenced by the Presence of Functional Groups 00
16.4 The Petroleum Industry is a Major Source of Organic Compounds 00
16.5 Nuclear Magnetic Resonance (NMR) Spectroscopy can be Used to Identify and Characterize Organic Compounds 00
16.6 Stoichiometry is the Quantitative Study of Mass and Mole Relationships in Chemical Reactions 00
17 Synthetic and Natural Organic Polymers 00
17.1 Properties of Polymers 00
17.2 Synthetic Organic Polymers 00
17.3 Proteins 00
17.4 Nucleic Acids 00
Box: The Discovery of the Double Helix 0 00
Box: The Human Genome 00
18 Nuclear Chemistry 00
18.1 Nuclear Chemistry is the Study of Changes Involving Atomic Nuclei 0 00
18.2 The Stability of a Nucleus is Determined Primarily by its Neutron to Proton Ratio 00
18.3 Radioactive Decay is a First-Order Kinetic Process 00
18.4 New Isotopes can be Produced Through the Process of Nuclear Transmutation 00
18.5 The splitting of a Large Nucleus into Smaller Nuclei is Called Nuclear Fission 00
18.6 In Nuclear Fusion Small Nuclei Merge Through Collision to Form Larger Nuclei 00
18.7 Radiactive and Stable Isotopes Alike Have Many Applications in Science and Medicine 00
18.8 Radiation can Have Profound Effects on Biological Systems 00
Appendix 1 Mathematical Background 00
A1.1 Differential and Integral Calculus 00
A1.2 Simple Differential Equations 00
A1.3 Finding Roots of Polynomials 00
A1.4 Matrix Manipulations 00
Appendix 2 Thermodynamic Data at 1 bar and 25° 00
Glossary G-1
Credits C-1
Index I-I
FPO

Preface

fprop_tx
This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section.

This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section.

New and Improved Changes

We define the main goal of this edition is to further improve areas that will facilitate the instructor and aid students in important areas such as organization, art program, readability, and media.

- The chapter on coordination chemistry has been moved to near the end of the book.
- The main goal of this edition is to further improve areas that will faciliate the student to learn better.
- The chapter on coordination chemistry.

The main goal of this edition is to further improve areas that will facilitate the instructor and aid students in important areas such as organization, art program, readability, and media.

Readability

1. New title reflecting the content of this text is for a one-year introductory chemistry course.
2. The chapter on coordination chemistry has been moved to near the end of the book.
3. The chapter on coordination chemistry has been moved to near the end of the book.

The main goal of this edition is to further improve areas that will facilitate the instructor and aid students in important areas such as organization, art program, readability, and media. The main goal of this edition is to further improve areas that will facilitate the instructor and aid students in important areas such as organization, art program, readability, and media.

Animations

fpr_hc
The main goal of this edition is to further improve areas that will facilitate the instructor.

1. New title reflecting the content of this text.
2. The chapter on coordination chemistry.

The main goal of this edition is to further improve areas that will facilitate the instructor.

Acknowledgments

The main goal of this edition is to further improve areas that will facilitate the instructor and aid students in important areas such as organization, art program, readability, and media.

William E. Acree University of North Texas

June Bronfenbrenner Anne Arundel Community College-Arnold
Adedoyin Adeyiga Bennett College
June Bronfenbrenner Anne Arundel Community College-Arnold
Adedoyin Adeyiga Bennett College
Gul Afshan Milwaukee School of Engineering
Adedoyin Adeyiga Bennett College
Gul Afshan Milwaukee School of Engineering
Adedoyin Adeyiga Bennett College
June Bronfenbrenner Anne Arundel Community
College-Arnold
Adedoyin Adeyiga Bennett College
Gul Afshan Milwaukee School of Engineering
Adedoyin Adeyiga Bennett College
Gul Afshan Milwaukee School of Engineering
Adedoyin Adeyiga Bennett College
June Bronfenbrenner Anne Arundel Community College-Arnold
Adedoyin Adeyiga Bennett College
Gul Afshan Milwaukee School of Engineering
Gul Afshan Milwaukee School of Engineering
The main goal of this edition is to further improve areas that will facilitate the instructor.
-Brian Laird

FPO

Features

Each chapter opening section contains a vibrant photograph to introduce the chapter as well as a clear, concise chapter outline. Then, to spark the student's interest, the chapter text begins on the actual opening page.

The main goal of this edition is to further improve areas that will facilitate the instructor and aid students in important areas such as organization, art program, readability, and media. The main goal of this edition is to further improve areas that will facilitate.

1. New title reflecting the content of this text is for a one-year introductory chemistry course.
2. The chapter on coordination chemistry has been moved to near the end of the book.
3. The chapter on coordination chemistry has been moved to near the end of the book.

FPO

Pedagogy

Each chapter opening section contains a vibrant photograph to introduce the chapter as well as a clear, concise chapter outline. Then, to spark the student's interest, the chapter text begins on the actual opening page.

- The chapter on coordination chemistry has been moved to near the end of the book.
- The main goal of this edition is to further improve areas that will faciliate the student to learn better.
- The chapter on coordination chemistry.

List of Selected Applications

ffm_ha
 Biology/Life Science

Energy transformation in a jumping flea, Section 6.7, p. 205
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting,
Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333
Energy transformation in a jumping flea, Section 6.7, p. 205
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting,
Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting,
Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting, Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333

Chemistry

Energy transformation in a jumping flea, Section 6.7, p. 205
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting,
Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333
Energy transformation in a jumping flea, Section 6.7, p. 205
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting,
Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting,
Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333

Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting,
Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333

Geology/Earth Science

Energy transformation in a jumping flea, Section 6.7, p. 205
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting, Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333
Energy transformation in a jumping flea, Section 6.7, p. 205
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting, Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting, Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting, Section 8.5, p. 278
Energy transformation in a jumping flea, Section 6.7, p. 205
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting, Section 8.5, p. 278
Arterial blockage, Example 9.12, p. 333
Energy transformation in a jumping flea, Section 6.7, p. 205
Energy conversion in animal jumping, Example 6.12, p. 205
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting, Section 8.5, p. 278
Flexor versus extensor muscles, Secdtion 8.5, p. 275
Forces ro hold arm horizontal, Section 8.10, p. 276
Forces on the human spine during heavy lifting, Section 8.5, p. 278

This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section.

This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section.

This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section.

Commitment of Time and Perseverance

1. New title reflecting the content of this text is for a one-year introductory chemistry course.
2. The chapter on coordination chemistry has been moved to near the end of the book.
3. The chapter on coordination chemistry has been moved to near the end of the book.

The main goal of this edition is to further improve areas that will facilitate the instructor and aid students in important areas such as organization, art program, readability, and media.

Animations

The main goal of this edition is to further improve areas that will facilitate the instructor.

1. New title reflecting the content of this text.
2. The chapter on coordination chemistry.

The main goal of this edition is to further improve areas that will facilitate the instructor.

Getting Organized

The main goal of this edition is to further improve areas that will facilitate the instructor and aid students in important areas such as organization, art program, readability, and media.

This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section.

This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section.

This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section.

This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section. This is an example of introductory text for the Preface section.

Chapter Outline

0.1 Cheistry is the study of matter and change 00
0.2 Matter is made of atoms and molecules 00
0.3 Compounds are represented by chemical formulas 00
0.4 Reactions are described by balanced chemical e quations 00
0.5 Quantities of atoms and can be described by mass or number 00
0.6 Stoichiometry is the quantitative study of mass and mole relationships in chemical reactions 00

The Basic Language bch_tt.bold of Chemistry

bchop_ha Chapter Overview

Elisis am iusci elessectet nim quisci erosto odignisl et in ulputat. Ut dip ex enibh et vel enibh er amconsequat at am, velisiscilit lobor augiatum irit at. Tet ipisisl ex esto dolore dolore magna faci tet doloreet vel delis nos del dolor iriure etum zzriliq uipisl ipis num quam, vullummod tat, cortisse dunt alisi tin voloborem dion vel utpatem nullutating ea aci erosto dui te magna feu faccum quatin ut nulla at, conummy nim dignibh et, volor ipis enissequis adignibh eliquatuer alit non utat. Duis nit, vel delit nulla alisci blaor susto cor suscips uscipisis eugait, corper iureraestrud tat. Ut lum quip estis augiam zzriustrud tie magnit lut aliquatue tat lutem quat. Duiscip ero euismodit wis ent at.

FPO

The Chinese characters for chemistry mean "The study of change."
bch_fgct_a

Table 4.1
Heats of Solution of Some Ionic Compounds

Compound mol)	$\Delta \mathbf{H}_{\text {soln }}$ $(\mathbf{k J} /$
LiCl	-37.1
CaCl 2	-82.8
NaCl	4.0
KCl	17.2
$\mathrm{NH}_{4} \mathrm{Cl}$	15.2

11.2 The Relationsip Between Conjugatae Acid-Base Ionization Constants

We defined chemistry at the beginning of the chapter as the study of matter and the changes it undergoes. Matter is anything that occupies space and has mass. Matter includes things we can see and touch (such as water, earth, and trees), as well as things we cannot (such as air). Thus, everything in the universe has a "chemical" connection we can see and touch.

Summary of Rules for Writing Equilibrium Constant Expressions

A substance is a form of matter that has a definite (constant) composition and distinct properties. Examples are water, ammonia, table sugar (sucrose), gold, and oxygen. Substances differ from one another in composition and can be identified by their appearance, smell, taste, and other properties.Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2.
a. How many electrons are present in a particular atom? How many electrons are present in a particular atom?
b. What energies do individual electrons possess? How many electrons are present in a particular atom?

Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2.

$$
\mathrm{CaCO}_{3}(s)+\mathrm{CaO}(s)=\mathrm{CO}_{2}(g)
$$

Examples are water, ammonia, table sugar (sucrose), gold, and oxygen. Substances differ from one another in composition and can be identified by their appearance.

Method 1	Method 2	bch_lutt
$3.66+8.45=30.9$	$3.66+8.45=30.93$	
$30.9+2.11=65.2$	$30.93+2.11=65.3$	bch_lu

The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2.

$\mathrm{B}_{2} \mathrm{H}_{6}$	diborane	bch_lu_a
CH_{4}	methane	
SiH_{4}	silane	
NH_{3}	ammonia	

Under certian conditions of pressure and temperature, most substances en exist in any one of the three states of matter: solid, liquid, or gas. Water, for example, can be solid ice, liquid water, or steam or eater vapor.

$$
\begin{equation*}
\text { bch_eq_a } \mathrm{CaCO}_{3}(s)+\mathrm{CaO}(s)=\mathrm{CO}_{2}(g) \tag{4.1}
\end{equation*}
$$

bch_eq_nm
The physical properites of a substance often depend on its state. most substances en exist in any one of the three states of matter: solid, liquid, or gas. Water, for example, can be solid ice, liquid water, or steam or eater vapor. The physical properites of a

FPO

Figure 1.3 (a) The output from an automated DNA sequencing machine. Each lane displays the sequence (indicated in different colors) obtained with a separate DNA sample. (b) Photovoltaic cells. (c) A silicon wafer being processed. (d) The leaf on the left was taken from a tobacco plant that was not genetically engineered but was exposed to tobacco hron worms. The leaf on the right was genetically engineered and is barely attached by the worms. The same technique can be applied to protect the leaves of other types of plants.
substance often depend on its state. Substances differ from one another in composition and can be identified by their appearance, smell, taste, and other properties.

- If a number is greater than 1 , then all the zeros written to the right of the decimal point count as significant figures.
- Potassium Bromide. The patassioum cation K+ and the bromine anion Br - combine to form the ionic compound potassium bromide.
- Any digit that is not zero is significant. Thus 845 cm has three significant figures, 1.234 kg has four significant figures, and so on.
Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances

1. Elements are composed of extremely small particles called atoms. All atoms of a given element are identical, having the same size, mass, and chemical properties.
2. Compounds are composed of atoms of more than one element. In any compound, the ration of the numbers of atoms of any two of the elements.

Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances

This Is a Third Level Head

Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances, mixtures, elements.

D-Head Runs In The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2.
\dagger John Dalton (1766-1844). English chemist, mathmetician, and philosopher. In addition to the atomic theory, he also formulated several gas laws and gave the first detailed description of color blindness.
$\dagger \dagger$ John Dalton (1766-1844). English chemist, mathmetician, and philosopher.

Physics Today

A gas is a substance that is normally in the gaseous state at ordinary temperatures and pressures; a vapor is the gaseous form of any substance that is a liquid or a solid at normal temperatures and pressures.

FPO

Figure 1.3 Thomson's model of the atom, sometimes descibed as the "plum-pudding" modle, after a traditional English dessert containing raisins. The electrons are embedded in a uniform, positively charged sphere. O Harry Biss. Oigignally published in the New Yooker Magazine.

Metal from the Sea

Magnesium is a valuable, lightweight metal used as a structural material as well as in alloys, in batteries, and in chemical synthesis.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{CaO}(\mathrm{~s})=\mathrm{CO}_{2}(\mathrm{~g})
$$

Earth's crust, it is cheaper to "mine" the metal from seawater. The classifications of matter.

Pressure Cookers

Chemists distinguish among several subcategories of matter based on composition and properties.

- If a number is greater than 1 , then all the zeros written to the right of the decimal point.
- Potassium Bromide. The patassioum cation K+ and the bromine anion Br - combine to form the ionic compound potassium bromide.
- Any digit that is not zero is significant. Thus 845 cm has three significant figures, 1.234 kg has four significant figures, and so on.

Chemists distinguish among several subcategories of matter based on composition and properties.

1. If a number is greater than 1 , then all the zeros written to the right of the decimal.
2. If a number is greater than 1 , then all the zeros written to the right of the decimal.
Chemists distinguish among several subcategories of matter based on composition and properties. Chemists distin-

FPO

bchba_fgnm bchba_fgct
Figure 1.3 Separating iron filings from a heterogeneous mixture. The same technique is used on a larger scale to separate iron and steel from nonmagnetic objects such as aluminum, glass, and plastics.
guish among several subcategories of matter based on composition and properties.

Unnumbered Table Per Survey	
Component	Melting Point ${ }^{\circ} \mathrm{C}$)
Bismuth (50%)	271
Cadmium (12.5%)	321
Lead (25%)	328

*Components are shown in percent by mass, and the melting point is that of the pure metal. Use for source or footnote.

Earth's crust, it is cheaper to "mine" the metal from seawater. The classifications of matter include substances, mixtures.

Earth's crust, it is cheaper to "mine" the metal from seawater. The classifications of matter.

The boiling point of HCN is 268 , but is close enough to qualify as a gas at ordinary atmospheric conditions.
Source: The boiling point of HCN is 268.
elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2. Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2. Chemists distinguish among several subcategories of matter based on composition and properties.

1. Elements are composed of extremely small particles called atoms. All atoms of a given element are identical, having the same size, mass.
2. Compounds are composed of atoms of more than one element. In any compound, the ration of the numbers of atoms of any two of the elements.
The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2. Substances differ from one another in composition and can be identified by their appearance, smell, taste, and other properties.

Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2. Examples are water, ammonia, table sugar (sucrose), gold, and oxygen. Substances differ from one another in composition and can be identified by their appearance.
bchea_tt

Example $19.1 \quad$ Calculating Molecular Mass

Calculate the molecular masses of the following compounds:
(a) sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ and (b) caffeine $\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}\right)$.

Strategy To calculate molecular mass, we need to count the number of each type of atom in the molecule and look up its atomic mass in the periodic table.

Solution The number of moles of EG in 651 g EG is:
(a) This is an alpha sublist entry example within an exersice.
(b) This is an alpha sublist entry example within an exersice this is an alpha sublist entry example within an exercise with a runover.

$$
\frac{10.50 \mathrm{~mol} \mathrm{EG}}{2.505 \mathrm{~kg} \mathrm{H}} \mathrm{H}_{2} \mathrm{O} \quad 4.19 \mathrm{~mole} \mathrm{EG} / \mathrm{Kg} \mathrm{H}_{2} \mathrm{O} 54.19 \mathrm{~m}
$$

Check Because 6.07 g is smaller than the molar mass, the answer is reasonable.
Comment 6.07 g is smaller than the molar mass, the answer is reasonable. Calculate the boiling point and freezing point of a solution containing 478 g of ethylene glycol in 3202 g of water.

FPO

Practice Exercise Calculate the boiling point and freezing point of a solution containing 478 g of ethylene glycol in 3202 g of water. Calculate the boiling point and freezing point of a solution containing 478 g of ethylene glycol in 3202 g of water.

Continued-

Solution The number of moles of EG in 651 g EG is. To calculate molecular mass, we need to count the number of each type of atom in the molecule and look up its atomic mass in the periodic table.
Step 1: We can deduce the skeletal structure of the carbonate ion by recognizing that C is less electronegative than). Therefore, it is most likely to occupy a central position.
Step 2: Skeletal structure of the carbonate ion by recognizing that C is less electronegative than). Therefore, it is most likely to occupy a central position.
Step 3: Structure of the carbonate ion by recognizing that C is less electronegative than). Therefore, it is most likely to occupy a central position.

Practice Exercise Calculate the boiling point and freezing point of a solution containing 478 g of ethylene glycol in 3202 g of water.

Check Calculate the boiling point and freezing point of a solution containing 478 g of ethylene glycol in 3202 g of water.

bchea_lutt	Reactants	Products
bchea_lu $\mathrm{Al}(4)$ $\mathrm{Al}(4)$ $\mathrm{O}(6)$ $\mathrm{O}(6)$		

(a) This is an alpha sublist entry example within an exersice.
(b) This is an alpha sublist entry example within an exersice this is an alpha sublist entry example within an exersice with a runnver.

Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2. Examples are water, ammonia, table sugar (sucrose), gold, and oxygen. Substances

Example 19.2

Calculate the molecular masses of the following compounds:
(a) sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ and (b) caffeine $\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}\right)$.

Strategy To calculate molecular mass, we need to count the number of each type of atom in the molecule and look up its atomic mass in the periodic table.

Solution The number of moles of EG in 651 g EG is:
(a) This is an alpha sublist entry example within an exersice.
(b) This is an alpha sublist entry example within an exersice this is an alpha sublist.

$$
\frac{10.50 \mathrm{~mol} \mathrm{EG}}{2.505 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}} 54.19 \mathrm{~mole} \mathrm{EG} / \mathrm{Kg} \mathrm{H}_{2} \mathrm{O} 54.19 \mathrm{~m}
$$

Check Because 6.07 g is smaller than the molar mass, the answer is reasonable.
differ from one another in composition and can be identified by their appearance, smell, taste, and other properties. Examples are water, ammonia, table sugar (sucrose), gold, and oxygen. Substances differ from one another in composition and can be identified by their appearance, smell, taste, and other properties.

11.3 The Structure of the Atom

We defined chemistry at the beginning of the chapter as the study of matter and the changes it undergoes. Matter is anything that occupies space and has mass. Matter includes things we can see and touch (such as water, earth, and trees), as well as things we cannot (such as air).

Step 1: We can deduce the skeletal structure of the carbonate ion by recognizing that C is less electronegative.
Step 2: Skeletal structure of the carbonate ion by recognizing that C is less electronegative than). Therefore, it is most likely to occupy a central position.

Step 3: Structure of the carbonate ion by recognizing that C is less electronegative than). Therefore, it is most likely to occupy a central position.

We defined chemistry at the beginning of the chapter as the study of matter and the changes it undergoes. Matter is anything that occupies space and has mass. Matter includes things we can see and touch (such as water, earth, and trees), as well as things we cannot (such as air).

Chapter Summary

Section 1.1

- The arsenic in Napoleon's hair was detected using a technique called neutron activation. When arsenic-75 is bonbarded with high energy neutrons, it is converted to the radioactive As-76 isotope. The energyof the rays emitted by the radioactive isotoped is characterstic of arsenic and the intensity of the rays establishes how much arsenic is present in a sample.
- The arsenic in Napoleon's hair was detected using a technique called neutron activation.

Section 1.2

- The arsenic in Napoleon's hair was detected using a technique called neutron activation. When arsenic-75 is bonbarded with high energy neutrons.

Key Words

Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206

Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process dother process, p. 208
Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208

Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207

Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206
Closed system, p. 207
Endothermic process, p. 208
Calimetry, p. 212
Chemical energy, p. 206

Questions and Problems

bcepq_eq
5.2 The arsenic in Napoleon's hair was detected using a technique called neutron activation. When arsenic75 is bonbarded with high energy neutrons.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{CaO}(\mathrm{~s})=\mathrm{CO}_{2}(\mathrm{~g})
$$

5.3 The arsenic in Napoleon's hair was detected using a technique called neutron activation.
5.4 The arsenic in Napoleon's hair was detected using a technique called neutron activation.
5.5 The arsenic in Napoleon's hair was detected using a technique called neutron activation. When arsenic75 is bonbarded with high energy neutrons.

bcepq_tt_a

Special Problems

5.123 The arsenic in Napoleon's hair was detected using a technique called neutron activation. bcepq_In_a
(a) Does a single molecule have a temperature?
(c) Comment on the validity of the previous statements.
15.124 The arsenic in Napoleon's hair was detected using a technique called neutron activation. When arsenic-75
5.6 The arsenic in Napoleon's hair was detected using a technique called neutron activation.

Problems

5.7 When arsenic-75 is bonbarded with high energy neutrons, it is converted to the radioactive.

Unnumbered Table Per Survey		bcepq_tbtt
Component	Melting Point (${ }^{\circ} \mathrm{C}$)	bcepq_tbcn
Bismuth (50\%)	271	bcepq_tbtx
Cadmium (12.5\%)	321	
Lead (25\%)	328	

5.121 When arsenic-75 is bonbarded with high energy neutrons, it is converted to the radioactive.
$\begin{array}{ll}\text { Unnumbered List entry } & \text { List entry } \\ \text { List entry } & \text { Unnumbered List entry }\end{array}$
5.122 The arsenic in Napoleon's hair was detected.
(a) As-76 isotope. When arsenic-75 is bonbarded
bcepq_la with high energy neutrons.
(b) As-76 isotope.
5.123 The arsenic in Napoleon's hair was detected.
is bonbarded with high energy neutrons, it is converted to the radioactive As-76 isotope. When arsenic- 75 is bonbarded with high energy neutrons, it is converted to the radioactive As-76 isotope. As-76 isotope. When arsenic-75 is bonbarded with high energy neutrons, it is converted to the radioactive As-76 isotope.

Answers to Practice Exercises

3.110 .81 amu. 3.2 3.59 moles. 3.3 2.57 X 100^{3} g. 3.4 8.49 X $10^{21} \mathrm{~K}$ atoms. 3.532 .04 amu .3 .61 .66 moles. 3.7 $5.81 \mathrm{X} 10^{24} \mathrm{H}$ atoms. $3.8 \mathrm{H}: 2.055 \%$; S: 32.69%; O: 65.25%. 3.9 KMnO_{4} (potassium permanganate). 3.10196 g. $3.11 \mathrm{~B}_{2} \mathrm{H}_{6} .3 .12 \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} 2 \mathrm{Fe}+$
$3 \mathrm{CO}_{2} 3.13235$ g. 3.140 .769 g. 3.15 (a) 234 g, (b) 234 g. $\mathbf{3 . 1 6}$ (a) 863 g, (b) 93.0%. $\mathbf{3 . 1 7} \mathrm{H}: 2.055 \%$; S: 32.69\%; O: 65.25\%. 3.18 KMnO_{4} (potassium permanganate). $\mathbf{3 . 1 9} 196$ g. $\mathbf{3 . 2 0} \mathrm{B}_{2} \mathrm{H}_{6}$. $3.21 \mathrm{Fe}_{2} \mathrm{O}_{3}+$ $3 \mathrm{CO} 2 \mathrm{Fe}+3 \mathrm{CO}_{2} 3.22235$ g. 3.230 .769 g. 3.24 (a) 234 g , (b) 234 g .3 .24 (a) 863 g , (b) 93.0%.

Appendix 1^{1}

Derivation of the Names of Elements*

eap_tben	Elements	Symbol	Atomic Atomic No.	Mass	Date of Discovery	Discoverer and Nationality	Derivation
eap_tbtx	Actinium	Ac	89	227	1899	A. Debierne (Fr.)	Gr. aktis, beam or ray
	Aluminum	Al	13	26.98	1827	F. Woehler (Ge.) compound in which it was discovered; derived from L. alumen, astringent taste	Alum, the aluminum
	Americium	Am	95	(243)	1944	A. Ghiorso (USA) R.A. James (USA) G.T. Seaborg (USA) S.G. Thompson (USA)	The Americas
	Antimony	Sb	51	121.8	Ancient		L. antimonium (anti, opposite of; monium, isolated condition), so named because it is a substance which combines readily; symbol L. stibium, mark
	Actinium	Ac	89	227	1899	A. Debierne (Fr.)	Gr. aktis, beam or ray
	Aluminum	Al	13	26.98	1827	F. Woehler (Ge.)	Alum, the aluminum compound in which it was discovered; derived from L. alumen, astringent taste
	Americium	Am	95	(243)	1944	A. Ghiorso (USA) R.A. James (USA) G.T. Seaborg (USA) S.G. Thompson (USA)	The Americas
	Antimony	Sb	51	121.8	Ancient		L. antimonium (anti, opposite of; monium, isolated condition), so named because it is a tangible (metallic) substance which combines readily; ymbol L. stibium, mark
	Actinium	Ac	89	227	1899	A. Debierne (Fr.)	Gr. aktis, beam or ray
	Aluminum	Al	13	26.98	1827	F. Woehler (Ge.)	Alum, the aluminum compound in which it was discovered
eap_tbso							
eap_tbfn	Source: Reprinted with permission from "The Elements and Derivation of Their Names and Symbols," G.P. Dinga, Chemistry 41 (2), 20-22 (1968). * The boiling point of HCN is 26°, but is close enough to qualify as a gas at ordinary atmospheric conditions.						

Appendix 2

Units for the Gas Constant

In this appendix we will see how the gas constant R can be expressed in units J / K mol. Our first step is to derive a realtionship between atm and pascal. We start with:

$$
\begin{aligned}
& \log 6.7 \times 10^{24}=23.17 \\
& \log 6.7 \times 10^{24}=23.17
\end{aligned}
$$

In each case, the logarithm of the numcer can be obtained by inspection. The common, or base-10, logarithm of any number is the power to which 10 must be raised to equal the number. The following are examples that illustrate this realtionship.

Logarithms

The common, or base-10, logarithm of any number is the power to which 10 must be raised to equal the number. The following are examples that illustrate this realtionship. The common, or base-10, logarithm of any number is the power to which 10 must be raised to equal the number. The following are examples that illustrate this realtionship.

Logarithms

Common Logorithms

The concept of the logarithms is an extension of the concept of exponents, which is discussed in Chapter 1. The common, or base-10, logarithm of any number is the power to which 10 must be raised to equal the number. The following are examples that illustrate this realtionship.

eap_lutt	Logarithm	Exponent
eap_lu	$\log 1=0$	$10^{0}=1$
	$\log 10=1$	$10^{1}=10$
	$\log 100=2$	$10^{2}=100$

In each case, the logarithm of the numcer can be obtained by inspection. The common, or base-10, logarithm of any number is the power to which 10 must be raised to equal the number. The following are examples that illustrate this realtionship. The common, or base-10, logarithm of any number is the power to which 10 must be raised to equal the number. The following are examples that illustrate this realtionship. The common, or base-10, logarithm of any number is the power to which 10 must be raised to equal the number.

Inorganic Substances				
Substance	$\mathbf{(k J / m o l})$	$\mathbf{(k J / m o l})$	$\mathbf{(J / K . m o l})$	$\mathbf{C p}$
$\mathrm{Ag}(\mathrm{s})$	0	0	42.7	42.7
$\mathrm{Ag}^{1}(\mathrm{aq})$	105.9	77.1	73.9	73.9
$\mathrm{AgCl}^{2}(\mathrm{~s})$	2127.0	2109.7	96.1	96.1
$\mathrm{Ag}^{(\mathrm{s})}$	0	0	42.7	42.7
$\mathrm{Ag}^{1}(\mathrm{aq})$	105.9	77.1	73.9	73.9

egl_tx
The number in parentheses is the number of the section in which the term first appears.

A

absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature zero of. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
absolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
accuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)

B

bsolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
bccuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
bsolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature. (5.3)
bccuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
bsolute temperature scale. A temperature scale that uses the absolute zero of temperature as the lowest temperature that uses the absolute zero of temperature as the lowest temperature. (5.3)
bccuracy. The closeness of a mesaurement to the true value of the quantity that is measured. (1.8)
bsolute temperature scale. A temperature scale that uses the absolute.

to Even-Numbered Problems

Chapter 1

1.4 (a) Hypothesis. (b) [Xe]6s24f145d5 1.12 (a) Physical change. (b) $8.49+10 \mathrm{~K}$ atoms. (c) Physical change. (d) Chemical change (e) Physical change. 1.14 (a) K. (b) Sn. (c) Cr. (d) B. 1.4 (a) Zn (s) 1 Cu 21 (aq) Zn 21 (aq) 1 Cu (s) $\mathbf{1 . 1 2}$ (a) Physical. (b) Chemical change. (c) Physical change. (d) $8.49+10 \mathrm{~K}$ atoms (e) Physical change. 1.14 (a) K. (b) Cu 21 (aq) $\mathrm{Zn} 21(\mathrm{aq}) 1 \mathrm{Cu}(\mathrm{s})$. 1.4 (a) Hypothesis. (b) [Xe]6s24f145d5 1.12 (a) Physical change. (b) $8.49+10 \mathrm{~K}$ atoms. (c) Physical change. (d) Chemical change. (e) Physical change. 1.14 (a) K. (b) Sn. (c) Cr. (d) B.
1.4 (a) Hypothesis. (b) [Xe]6s24f145d5 1.12 (a) Physical change. (b) Zn (s) 1 Cu 21 (aq) Zn 21 (aq) $1 \mathrm{Cu}(\mathrm{s})$. (d) $8.49+10 \mathrm{~K}$ atoms (e) Physical change. 1.14 (a) K. (b) Sn. (c) Cr. (d) B.
1.4 (a) Hypothesis. (b) Law. (c) Theory 1.12 (a) Physical change. (b) $8.49+10 \mathrm{~K}$ atoms. (c) Physical change. (d) Chemical change (e) Physical change. 1.14 (a) K. (b) Sn. (c) Cr. (d) B.
1.4 (a) Hypothesis. (b) [Xe]6s24f145d5 1.12 (a) Physical change. (b) Chemical change. (c) [Xe]6s24f145d5 (e) Physical change. 1.14 (a) K. (b) Sn. (c) Cr. (d) B. (e) Cr. (f) B (g) Cr. (h) B 1.4 (a) Hypothesis. (b) Law. (c) Theory 1.12 (a) Physical change. (b) Chemical change. (c) Physical change. (d) Chemical change (e) Physical change. 1.14 (a) K. (b) Sn. (c) Cr. (d) B.

Chapter 2

2.4 (a) Hypothesis. (b) Law. (c) Theory 2.12 (a) Physical change. (b) Chemical change. (c) Physical change. (d) Chemical change (e) Physical change. 2.14 (a) $\mathrm{Zn}(s)$ ú $\mathrm{Cu}^{2 \hat{U}}(a q) \mathrm{Zn}^{2 \dot{U}}(a q)$ ú $\mathrm{Cu}(s) 2.4$ (a) Hypothesis. (b) Law. (c) Theory 2.12 (a) Physical change. (b) Chemical change. (c) Physical change. (d) Chemical change (e) Physical change. 2.14 (a) K. (b) Sn. (c) Cr. (d) B. 2.4 (a) Hypothesis. (b) Law. (c) Theory 2.12 (a) Physical change. (b) $\mathrm{Zn}(s)$ Ú $\mathrm{Cu}^{2 \dot{\sigma}}(a q) \mathrm{Zn}^{2 \dot{6}}(a q)$ ú $\mathrm{Cu}(s)$. (d) Chemical change (e) Physical change. 2.14 (a) K. (b) $[\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{5}$ 2.4 (a) Hypothesis. (b) Law. (c) Theory 2.12 (a) Physical change. (b) Chemical change. (c) $[\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{5}$ (d) Chemical change (e) Physical change. 2.14 (a) K. (b) Sn. (c) Cr. (d) B. 2.4 (a) Hypothesis. (b) Law. (c) Theory 2.12 (a) Physical change. (b) $8.49+10 \mathrm{~K}$ atoms. (c) $\mathrm{Zn}(s)$ ú $\mathrm{Cu}^{2 \hat{U}}(a q) \mathrm{Zn}^{2 \hat{U}}(a q)$ ú $\mathrm{Cu}(s)$ (e) Physical change. 2.14 (a) K. (b) Sn . (c) Cr. (d) B. 2.4 (a) Hypothesis. (b) Law. (c) Theory 2.12 (a) Physical change. (b) Chemical change. (c) Physical change. (d) $8.49+$ 10K atoms. (e) Physical change. 2.14 (a) K. (b) Sn . (c) Cr . (d) B. 2.4 (a) Hypothesis. (b) Law. (c) Theory 2.12 (a) Physical change. (b) $8.49+10 \mathrm{~K}$ atoms. (c) $[\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{5}$ (d) Physical change. 2.14 (a) K. (b) Sn . (c) Cr. (d) B. 2.4 (a) $\mathrm{Zn}(s)$ ú $\mathrm{Cu}^{2 \dot{U}}(a q) \mathrm{Zn}^{2 U}(a q)$ Ú $\mathrm{Cu}(s) 2.12$ (a) Physical. (b) Chemical change. (c) Physical change. (d) $8.49+10 \mathrm{~K}$ atoms. (e) Physical change. 2.14 (a) K. (b) Sn. (c) Cr. (d) B. 2.14 (a) K. (b) Sn. (c) Cr. (d) B. 2.4 (a) Hypothesis. (b) Law. (c) Theory 2.12
(a) Physical change. (b) Chemical change. (c) Physical change.
(d) Chemical change (e) Physical change. 2.14 (a) K. (b) Sn.
(c) Cr. (d) B. 2.4 (a) Hypothesis. (b) Law. (c) Theory 2.12 (a) Physical change. (b) Chemical change. (c) Physical change. (d) Chemical change (e) Physical change.
2.14 (a) $\mathrm{Zn}(s)$ ú $\mathrm{Cu}^{2 \hat{6}}(a q) \mathrm{Zn}^{2 \dot{U}}(a q)$ ú $\mathrm{Cu}(s)$ (b) Sn . (c) Cr . (d) B. 2.4 (a) Hypothesis. (b) Law. (c) Theory $\mathbf{2 . 1 2}$ (a) Physical change. (b) $8.49+10 \mathrm{~K}$ atoms. (c) Physical change. (d) Chemical change (e) Physical change. 2.14 (a) K. (b) Sn. (c) Cr. (d) B. 2.4 (a) Hypothesis. (b) Law. (c) Theory 2.12 (a) Physical change. (b) Chemical change. (c) Physical change. (d) $8.49+$ 10 K atoms. (e) Physical change. 2.14 (a) $\mathrm{Zn}(s)$ ú $\mathrm{Cu}^{2 U}(a q)$ $\mathrm{Zn}^{2 U}(a q)$ Ú $\mathrm{Cu}(s)$.

Chapter 3

3.4 (a) Hypothesis. (b) $[\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{5} 3.12$ (a) Physical change. (b) $8.49+10 \mathrm{~K}$ atoms. (c) Physical change. (d) Chemical change (e) Physical change. 3.14 (a) K. (b) Sn. (c) Cr. (d) B.
3.4 (a) $\mathrm{Zn}(s)$ ú $\mathrm{Cu}^{2 U(}(a q) \mathrm{Zn}^{2 U}(a q)$ Ú $\mathrm{Cu}(s) 3.12$ (a) Physical.
(b) Chemical change. (c) Physical change. (d) Chemical change (e) Physical change. $\mathbf{3 . 1 4}$ (a) $\mathrm{Zn}(s)$ ú $\mathrm{Cu}^{2 U}(a q) \mathrm{Zn}^{2 U}(a q)$ ú $\mathrm{Cu}(s) .3 .4$ (a) Hypothesis. (b) Law. (c) Theory $\mathbf{3 . 1 2}$ (a) Physical change. (b) Chemical change. (c) Physical change. (d) $8.49+$ 10 K atoms. (e) Physical change. 3.14 (a) K. (b) Sn. (c) Cr. (d) B. 3.4 (a) Hypothesis. (b) $[\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{5} 3.12$ (a) Physical change. (b) $8.49+10 \mathrm{~K}$ atoms. (c) Physical change.
(d) Chemical change (e) Physical change. 3.12 3.4
(a) Hypothesis. (b) Law. (c) Theory 3.12 (a) Physical change.
(b) Chemical change. (c) Physical change. (d) Chemical change (e) Physical change. 3.14 (a) K. (b) Sn. (c) Cr. (d) B.
3.4 (a) Hypothesis. (b) Sn. (c) Cr. (d) B (b) Sn. (c) Cr. (d) B (b) Law. (c) Theory 3.12 (a) Physical change. (b) Chemical change. (c) $[\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{5}$ (e) Physical change. 3.14 (a) K. (b) Sn. (c) Cr. (d) B. 3.4 (a) Hypothesis. (b) Law. (c) Theory 3.12 (a) Physical change. (b) Chemical change. (c) $\mathrm{Zn}(s)$ ú $\mathrm{Cu}^{2 \dot{U}}(a q) \mathrm{Zn}^{2 \dot{U}}(a q)$ ú $\mathrm{Cu}(s)$ (e) Physical change. 3.13 (a) $\mathrm{Zn}(s)$ Ú $\mathrm{Cu}^{2 U}(a q) \mathrm{Zn}^{2 U}(a q)$ ú $\mathrm{Cu}(s)$.
(c) Physical change. (d) Chemical change (e) Physical change. 3.14 (a) K. (b) Sn. (c) Cr. (d) B. 3.4 (a) Hypothesis. (b) Law. (c) Theory $\mathbf{3 . 1 2}$ (a) $\mathrm{Zn}(s)$ ú $\mathrm{Cu}^{2 \hat{U}}(a q) \mathrm{Zn}^{2 \hat{U}}(a q)$ ú $\mathrm{Cu}(s)$.
(c) Physical change. (d) Chemical change (e) Physical change. 3.15 (a) K. (b) Sn. (c) Cr. (d) B. 3.4 (a) Hypothesis. (b) Law. (c) Theory 3.12 (a) Physical change. (b) Chemical change. (c) Physical change. (d) Chemical change (e) Physical change. 3.12 (a) Physical change. (b) Chemical change. (c) $\mathrm{Zn}(s)$ ú $\mathrm{Cu}^{2 \dot{U}}(a q) \mathrm{Zn}^{2 \dot{U}}(a q)$ ú $\mathrm{Cu}(s)$ (e) Physical change. 3.13 (a) $\mathrm{Zn}(s)$ Ú $\mathrm{Cu}^{2 U}(a q) \mathrm{Zn}^{2 \tilde{U}}(a q)$ ú $\mathrm{Cu}(s)$.
(c) Physical change. (d) Chemical change (e) Physical change. 3.14 (a) K. (b) Sn. (c) Cr. (d) B. 3.4 (a) Hypothesis. (b) Law. (c) Theory $\mathbf{3 . 1 2}$ (a) $\mathrm{Zn}(s)$ ú $\mathrm{Cu}^{2 \hat{U}}(a q) \mathrm{Zn}^{2 \hat{U}}(a q)$ ú $\mathrm{Cu}(s)$.
(c) Physical change. (d) Chemical change (e) Physical change. 3.15 (a) K. (b) Sn. (c) Cr. (d) B. 3.4 (a) Hypothesis. (b) Law. (c) Theory 3.12 (a) Physical change. (b) Chemical change.

Chapter 1

Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography

Chapter 2

Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography

Chapter 3

Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication.

Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography.

Chapter 4

Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Photography. Page iv: © Fritz Goro/TimePix/ Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp

Chapter 5

Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life

Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp

Chapter 6

Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Syndication. Page v: © Ken Kar Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/TimePix/Time Life Syndication. Page v: © Ken Karp Photography. Page iv: © Fritz Goro/Time Life Syndication. Page v: © Ken Karp Photography. Page v: © Ken Karp Photography. Page iv: © Fritz

A

Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
ionization constant of, 612
titrations of, 664
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612, 664, 965
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612, 664, 965
ionization constant of, 612
titrations of, 664
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965

Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
ionization constant of, 612
titrations of, 664
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612, 664, 965
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
ionization constant of, 612
titrations of, 664
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
ionization constant of, 612
titrations of, 664
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163

Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
ionization constant of, 612
titrations of, 664
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
ionization constant of, 612
titrations of, 664
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Absolute antropy, 736, 742
Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Absolute antropy, 736, 742

Absolute temperature scale, 17, 163
Absoloute Zero, 163
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$

B

Bbsoloute Zero, 163
Bcetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
ionization constant of, 612
titrations of, 664
Bbsolute antropy, 736, 742
Bbsolute temperature scale, 17, 163
Bbsoloute Zero, 163
Bcetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Bbsolute antropy, 736, 742
Bbsolute temperature scale, 17, 163
Bbsoloute Zero, 163
Bcetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Bbsolute antropy, 736, 742
Bbsolute temperature scale, 17, 163
Bbsoloute Zero, 163
Bcetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Bbsolute antropy, 736, 742
Bbsolute temperature scale, 17, 163
Bbsoloute Zero, 163
Bcetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Bbsolute antropy, 736, 742
Bbsolute temperature scale, 17, 163
Bbsoloute Zero, 163
Bcetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612, 664, 965
Bbsoloute Zero, 163
Beetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$, 664, 965
ionization constant of, 612
titrations of, 664
Bbsolute antropy, 736, 742
Bbsolute temperature scale, 17, 163
Bbsoloute Zero, 163
Bcetic acid ($\mathrm{CH}_{3} \mathrm{CHO}$), 113, 612
Bbsolute antropy, 736, 742
Bbsolute temperature scale, 17, 163
Bbsoloute Zero, 163
Bcetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Bbsolute antropy, 736, 742
Bbsolute temperature scale, 17, 163
Bbsoloute Zero, 163
Bcetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Bbsolute antropy, 736, 742
Bbsolute temperature scale, 17, 163
Bbsoloute Zero, 163
Bcetic acid $\left(\mathrm{CH}_{3} \mathrm{CHO}\right), 113,612$
Bbsolute antropy, 736, 742
Bbsolute temperature scale, 17, 163
Bbsoloute Zero, 163

Chapter Outline

0.1 Cheistry is the study of matter and change 00
0.2 Matter is made of atoms and molecules 00
0.3 Compounds are represented by chemical formulas 00
0.4 Reactions are described by balanced chemical e quations 00
0.5 Quantities of atoms and can be described by mass or number 00
0.6 Stoichiometry is the quantitative study of mass and mole relationships in chemical reactions 00

The Basic Language of Chemistry

Chapter Overview

Elisis am iusci elessectet nim quisci erosto odignisl et in ulputat. Ut dip ex enibh et vel enibh er amconsequat at am, velisiscilit lobor augiatum irit at. Tet ipisisl ex esto dolore dolore magna faci tet doloreet vel delis nos del dolor iriure etum zzriliq uipisl ipis num quam, vullummod tat, cortisse dunt alisi tin voloborem dion vel utpatem nullutating ea aci erosto dui te magna feu faccum quatin ut nulla at, conummy nim dignibh et, volor ipis enissequis adignibh eliquatuer alit non utat. Duis nit, vel delit nulla alisci blaor susto cor suscips uscipisis eugait, corper iureraestrud tat. Ut lum quip estis augiam zzriustrud tie magnit lut aliquatue tat lutem quat. Duiscip ero euismodit wis ent at.

Metal from the Sea

Cagnesium is a valuable, lightweight metal used as a structural material as well as in alloys, in batteries, and in chemical synthesis.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{CaO}(\mathrm{~s})=\mathrm{CO}_{2}(\mathrm{~g})
$$

Earth's crust, it is cheaper to "mine" the metal from seawater. The classifications of matter.

Pressure Cookers

Chemists distinguish among several subcategories of matter based on composition and properties.

- If a number is greater than 1 , then all the zeros written to the right of the decimal point.
- Potassium Bromide. The patassioum cation K+ and the bromine anion Br - combine to form the ionic compound potassium bromide.
- Any digit that is not zero is significant. Thus 845 cm has three significant figures, 1.234 kg has four significant figures, and so on.

Chemists distinguish among several subcategories of matter based on composition and properties.

1. If a number is greater than 1 , then all the zeros written to the right of the decimal.
2. If a number is greater than 1 , then all the zeros written to the right of the decimal.

Chemists distinguish among several subcategories of matter based on composition and properties. Chemists distin-

FPO

Figure 1.3 Separating iron filings from a heterogeneous mixture. The same technique is used on a larger scale to separate iron and steel from nonmagnetic objects such as aluminum, glass, and plastics.
guish among several subcategories of matter based on composition and properties.

Unnumbered Table Per Survey

Component	Melting Point (${ }^{\circ} \mathrm{C}$)
Bismuth (50%)	271
Cadmium (12.5%)	321
Lead (25\%)	328

*Components are shown in percent by mass, and the melting point is that of the pure metal. Use for source or footnote.

Earth's crust, it is cheaper to "mine" the metal from seawater. The classifications of matter include substances, mixtures.

Earth's crust, it is cheaper to "mine" the metal from seawater. The classifications of matter.

Cagnesium is a valuable, lightweight metal used as a structural material as well as in alloys, in batteries, and in chemical synthesis.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{CaO}(\mathrm{~s})=\mathrm{CO}_{2}(\mathrm{~g})
$$

Earth's crust, it is cheaper to "mine" the metal from seawater. The classifications of matter. Cagnesium is a valuable, lightweight metal used as a structural material as well as in alloys, in batteries, and in chemical synthesis.

Pressure Cookers

Chemists distinguish among several subcategories of matter based on composition and properties. Cagnesium is a valuable, lightweight metal used as a structural material as well as in alloys, in batteries, and in chemical synthesis.

- If a number is greater than 1 , then all the zeros written to the right of the decimal point. If a number is greater than 1 , then all the zeros written to the right of the decimal point. If a number is greater than 1 , then all the zeros written to the right of the decimal point.
- Potassium Bromide. The patassioum cation K+ and the bromine anion $\mathrm{Br}-$ combine to form the ionic compound potassium bromide.
- Any digit that is not zero is significant. Thus 845 cm has three significant figures, 1.234 kg has four significant figures, and so on.
Chemists distinguish among several subcategories of matter based on composition properties. Chemists distinguish
among several subcategories of matter based on composition and properties. Cagnesium is a valuable, lightweight metal used as a structural material as well as in alloys, in batteries, and in chemical synthesis.

1. If a number is greater than 1 , then all the zeros written to the right of the decimal. If a number is greater than 1 , then all the zeros written to the right of the decimal.
2. If a number is greater than 1 , then all the zeros written to the right of the decimal.
3. If a number is greater than 1 , then all the zeros written to the right of the decimal. If a number is greater than 1 , then all the zeros written to the right of the decimal.

Chemists distinguish among several subcategories of matter based on composition and properties. Cagnesium is a valuable, lightweight metal used as a structural material as well as in alloys, in batteries, and in chemical synthesis. Chemists distinguish among several subcategories of matter based on composition and properties. Cagnesium is a valuable, lightweight metal used as a structural material as well as in alloys, in batteries, and in chemical synthesis. Chemists distinguish among several subcategories of matter based on composition and properties. Cagnesium is a valuable, lightweight metal used as a structural material as well as in alloys, in batteries, and in chemical synthesis. Chemists distinguish among several subcategories of matter based on composition and properties.

Study Hint

If you have a clear idea of what you want to accomplish before you begin to read a chapter. your reading will be more effective. The questions in this chapter out-line-as well as those in the subheadings of each section-can serve as a checklist for measuring your progress as your read. A clear picture of what questions are going to be addressed and where the answers will be found forms a mental road map to guide you through the chapter. Take a few minutes to study the outline and fix this road map in your mind. It will be time well spent.

11.2 The Relationsip Between Conjugatae Acid-Base Ionization Constants

We defined chemistry at the beginning of the chapter as the study of matter and the changes it undergoes. Matter is anything that occupies space and has mass. Matter includes things we can see and touch (such as water, earth, and trees), as well as things we cannot (such as air). Thus, everything in the universe has a "chemical" connection we can see and touch.

Summary of Rules for Writing Equilibrium Constant Expressions

A substance is a form of matter that has a definite (constant) composition and distinct properties. Examples are water, ammonia, table sugar (sucrose), gold, and oxygen. Substances differ from one another in composition and can be identified by their appearance, smell, taste, and other properties.Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2.

Mass is a measure of an object's inertia, the property that causes it to resist a change in its motion.

Chemists distinguish among several subcategories of matter based on composition and properties. The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2.

Aristole's ideas on motion, although not capable of making quantitative predictions, provided explanations that were widely accepted for many centuries and that fit well with some of our own commonsense thinking.

Examples are water, ammonia, table sugar (sucrose), gold, and oxygen. Substances differ from one another in composition and can be identified by their appearance.

Method 1 Method 2

$$
\begin{array}{ll}
3.66+8.45=30.9 & 3.66+8.45=30.93 \\
30.9+2.11=65.2 & 30.93+2.11=65.3
\end{array}
$$

The classifications of matter include substances, mixtures, elements, and compounds, as well as atoms and molecules, which we will consider in Chapter 2.

$\mathrm{B}_{2} \mathrm{H}_{6}$	diborane
CH_{4}	methane
SiH_{4}	silane
NH_{3}	ammonia

Under certian conditions of pressure and temperature, most substances en exist in any one of the three states of matter: solid, liquid, or gas. Water, for example, can be solid ice, liquid water, or steam or eater vapor.

$$
\begin{equation*}
\mathrm{CaCO}_{3}(s)+\mathrm{CaO}(s)=\mathrm{CO}_{2}(g) \tag{4.1}
\end{equation*}
$$

The physical properites of a substance often depend on its state. most substances en exist in any one of the three states of matter: solid, liquid, or gas. Water, for example, can be solid ice, liquid water, or steam or eater vapor. The physical properites of a

Further Readings

Espenson, J.H.: Chemical Kinetics and Reaction Mechanisms, 2d ed., McGraw-Hill, 1995
Eyring, H., D. Henderson, and W. Jost (eds.): Physical Chemistry: And Advanced Treatise, Academic, 1967-1975
Frost, W.: Theory of Unimolecular Reactions, Academic, 1973.
Franks, F. (ed.); Water: A Comprehensive Treatise, vols. 1-7, Plenum, 1972-1982.
Friebolin, H.: Basic One- and Two-Dimensional NMR Spectroscopy, 3d ed., Wiley, 1998

Espenson, J.H.: Chemical Kinetics and Reaction Mechanisms, 2d ed., McGraw-Hill, 1995
Eyring, H., D. Henderson, and W. Jost (eds.): Physical Chemistry: And Advanced Treatise, Academic, 1967-1975.
Frost, W.: Theory of Unimolecular Reactions, Academic, 1973.
Franks, F. (ed.); Water: A Comprehensive Treatise, vols. 1-7, Plenum, 1972-1982.
Friebolin, H.: Basic One- and Two-Dimensional NMR

[^0]: * The boiling point of HCN is 268 , but is close enough to qualify as a gas at ordinary atmospheric conditions.

 Source: The boiling point of HCN is 268.

[^1]: Source: Reprinted with permission from "The Elements and Derivation of Their Names and Symbols," G.P. Dinga, Chemistry 41 (2), 20-22 (1968).

 * The boiling point of HCN is 26°, but is close enough to qualify as a gas at ordinary atmospheric conditions.

[^2]: Box: Major Experimental Technique: Mass
 Spectrometry 00

[^3]: Box: Major Experimental
 Technique: Mass
 Spectrometry 00

[^4]: * The boiling point of HCN is 268 , but is close enough to qualify as a gas at ordinary atmospheric conditions.

[^5]: Source: Reprinted with permission from "The Elements and Derivation of Their Names and Symbols," G.P. Dinga, Chemistry 41 (2), 20-22 (1968).

 * The boiling point of HCN is 26°, but is close enough to qualify as a gas at ordinary atmospheric conditions.

